Open Access

Composition of Volatile Compounds of Horseradish Roots (Armoracia rusticana L.) Depending on the Genotype


Cite

1. Afsharypuor, S., Jeiran, K., & Jazy, A.A. (1998). First investigation of the flavor profiles of leaf, ripe fruit and root of Capparisspinosa var. mucronifolia from Iran. Pharmaceutica acta Helvetiae, 72, 307-309. DOI: 10.1016/S0031-6865(97)00023-X.10.1016/S0031-6865(97)00023-XSearch in Google Scholar

2. Andreasson, E., Jorgensen, L. B., Hoglund, A.S., Rask, L., & Meijer, J. (2001). Different myrosinase and idioblast distribution in Arabidopsis and Brassica napus. PlantPhysiology, 127(4), 1750-1763. DOI: 10.1104/ pp.010334.10.1104/pp.010334Search in Google Scholar

3. Arrigoni-Blank, M.F., Antoniolli, A.R., Caetano, L.C., Campos, D.A., Blank, A. F., & Alves, P.B. (2008). Antinociceptive activity of the volatile oils of Hyptis pectinata L. Poit. (Lamiaceae) genotypes. Phytomedicine, 15, 334-339. DOI: 10.1016/j.phymed.2007.09.009.10.1016/j.phymed.2007.09.009Search in Google Scholar

4. Bodnaryk, R.P., Luo, M., & Kudryk, L. (1997). Effects of modifying the phytosterol profile of canola, Brassica napus L., on growth, development, and survival of the bertha armyworm, Mamestra configurata Walker (Lepidoptera: Noctuidae), the flea beetle, Phyllotreta cruciferae (Goeze) (Coleoptera: Chrysomelidae), and the aphids, Lipaphiserysimi (Kaltenbach) and Myzus persicae (Sulzer) (Homoptera: Aphididae). CanadianJournal of Plant Science, 77, 677-683. DOI: 93.177.194.180 on 10/10/12.10.4141/P97-011Search in Google Scholar

5. Bones, A.M., & Rossiter, J.T. (1996). The myrosinase-glucosinolate system, its organization and biochemistry. PlantPhysiology, 97(1), 194-208.Search in Google Scholar

6. Bones, A.M., & Rossiter, J.T. (2006). The enzymic and chemically induced decomposition of glucosinolates. Phytochemistry, 67(11), 1053-1067. DOI: 10.1016/j.phytochem.2006.02.024.10.1016/j.phytochem.2006.02.024Search in Google Scholar

7. Dinkova-Kostova, A.T. (2008). The isothiocyanate sulforaphane induces the phase 2 response by signaling of the Keap1-Nrf2-ARE pathway: Implications for dietary protection against cancer. In Young-Joon Surh (Ed.), Dietary Modulation of Cell Signaling Pathways (pp. 206-227). LLC CRC Press.10.1201/9780849381492.ch8Search in Google Scholar

8. Fahey, J.W., Zalcmann, A.T., & Talalay, P. (2001). The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry, 56(1), 5-51. DOI: 10.1016/S0031-9422(00)00316-2.10.1016/S0031-9422(00)00316-2Search in Google Scholar

9. Fenwick, G.R., Heaney, R.K., & Mullin, W.J. (1983). Glucosinolates and their breakdown products in food and food plants. Food Science and Nutrition, 18, 123-201. DOI: 10.1016/0308-8146(83)90074-2.10.1016/0308-8146(83)90074-2Search in Google Scholar

10. Gaind, K.N., Gandhi, K.S., Junega, T.R., Kjær, A., & Juhl, N.B. (1975). 4,5,6,7-tetrahydroxydecyl isothiocyanate derived from a glucosinolate in Capparisgrandis. Phytochemistry, 14, 1415-1418. DOI: 10.1016/S0031-9422(00)98640-0.10.1016/S0031-9422(00)98640-0Search in Google Scholar

11. Gamage, G.R., Park, H.J., & Kim, K.M. (2009). Effectiveness of antimicrobial coated oriented polypropylene/polyethylene films in sprout packaging. Food ResearchInternational, 42, 832-839. DOI: 10.1016/j. foodres.2009.03.012.Search in Google Scholar

12. Gil, V., & MacLeod, A.J. (1980). The effects of pH on glucosinolate degradation by a thioglucoside glucohydrolase preparation. Phytochemistry, 19(12), 2547-2551. DOI: 10.1016/S0031-9422(00)83916-3.10.1016/S0031-9422(00)83916-3Search in Google Scholar

13. Halkier, B.A., & Gershenzon, J. (2006). Biology and biochemistry of glucosinolates. AnnualReview of Plant Biology, 57, 303-333. DOI: 10.1146/annurev.arplant.57.032905.105228.10.1146/annurev.arplant.57.032905.105228Search in Google Scholar

14. Kjaer, A. (1976). Glucosinolates in the cruciferae. In J.G. Vaughan, A.J. MacLeod & B.M.G. Jons (Eds.), The Biology and Chemistryof the Cruciferae (pp. 207-219.). London: Academic Press.Search in Google Scholar

15. Ko, J.A., Kim, W.Y., & Park, H.J. (2012). Effects of microencapsulated Allyl isothiocyanate (AITC) on the extension of the shelf-life of Kimchi International. Journal of FoodMicrobiology, 153, 92-98. DOI: 10.1016/j. ijfoodmicro.2011.10.021.Search in Google Scholar

16. Kulisic-Bilusic, T., Schmöller, I., Schnäbele, K., Siracusa, L., & Ruberto, G. (2012). The anticarcinogenic potential of essential oil and aqueous infusion from caper (Capparis spinosa L.). Food Chemistry, 132, 261-267. DOI: 10.1016/j.foodchem.2011.10.074.10.1016/j.foodchem.2011.10.074Search in Google Scholar

17. Li, C., Xue, F., Xu, Y., Ren, C., & Pan, S. (2012). Influence of different gel complexes on flavour and colour change in Chongcai pastage. Food Chemistry, 130, 632-637. DOI: 10.1016/j. foodchem.2011.07.095.Search in Google Scholar

18. Mari, M., Leoni, O., Bernardi, R., Neri, F., & Palmieri, S. (2008). Control of brown rot on stonefruit by synthetic and glucosinolatederived isothiocyanates. Postharvest Biologyand Technology, 47, 61-67. DOI: 10.1016/j. postharvbio.2007.06.003.Search in Google Scholar

19. Matich, A.J., Young, H., Allen, J.M., Wang, M.Y., Fielder, S., McNeilage, M.A., & MacRae, E.A. (2003). Actinidia arguta: volatile compounds in fruit and flowers. Phytochemistry, 63, 285-301. DOI: 10.1016/S0031-9422(03)00142-0.10.1016/S0031-9422(03)00142-0Search in Google Scholar

20. Matthaus, B., & Özcan, M. (2002). Glucosinolate composition of young shoots and flower buds of capers (Capparis species) growing wild in Turkey. Journal of agricultural and foodchemistry, 50(25), 7323-7325. DOI: 10.1021/ jf020530+.10.1021/jf020530+12452652Search in Google Scholar

21. Matusheski, N.V., & Jeffery, E.H. (2001). Comparison of the bioactivity of two glucoraphanin hydrolysis products found in broccoli, sulforaphane and sulforaphane nirile. Food Chemistry, 49(12), 5743-5749. DOI: 10.1021/jf010809a.10.1021/jf010809a11743757Search in Google Scholar

22. Mayton, H.S. (1996). Correlation of fungicidal activity of Brassica species with allylisothiocyanate production in macerated leaf tissue. Phytopathology, 86, 267-271.10.1094/Phyto-86-267Search in Google Scholar

23. Neoh, T.L., Yamamoto, C., Ikefuji, S., Furuta, T., & Yoshii, H. (2012). Heat stability of allylisothiocyanate and phenylisothiocyanate complexed with randomly methylated β-cyclodextrin. Food Chemistry, 131, 1123-1131. DOI: 10.1016/j.foodchem.2011.09.077.10.1016/j.foodchem.2011.09.077Search in Google Scholar

24. Olsson, K., & Jonasson, T. (1994). Leaf feeding by caterpillars on white cabbage cultivars with different 2-propenyl glucosinolate (sinigrin). Journal of Applied Entomology, 118, 197-202. DOI: 10.1111/j.1439-0418.1994.tb00794.x.10.1111/j.1439-0418.1994.tb00794.xSearch in Google Scholar

25. Park, I.K., Choi, K.S., Kim, D.H., Choi, I.H., Kim, L.S., Bak, W.C., ... Shin, S.C. (2006). Fumigant activity of plant essential oils and components from horseradish (Armoraciarusticana), anise (Pimpinella anisum) and garlic (Allium sativum) oils against Lycoriella ingenua (Diptera: Sciaridae). Pest Management Science, 62, 723-728. DOI: 10.5897/AJB10.2023.Search in Google Scholar

26. Pfalz, M., Vogel, H., Mitchell-Olds, T., & Kroymann, J. (2007, June). Mapping of QTL for resistance against the crucifer specialist herbivore Pieris brassicae in a new Arabidopsis inbred line population, Da(1)-12 x Ei-2 [Abstract]. PLoS One, 2(6):e578. Retrieved from PubMed database on the World Wide Web: http://www.ncbi.nlm.nih.gov/pubmed/17593977.DOI:101371/journal.pone.0000578.10.1371/journal.pone.0000578189280017593977Search in Google Scholar

27. Raghavan Uhl, S. (2000). A to Z spices. In Handbook of Spices, Seasonings, andFlavorings (pp. 59-60). CRC Press LLC.10.1201/9781420012552-4Search in Google Scholar

28. Rask, L., Andréasson, E., Ekbom, B., Eriksson, S., Pontoppidan, B., & Meijer, J. (2000). Myrosinase: gene family evolution and herbivore defense in Brassiceae. Plantmolecular biology, 42 (1), 93-113. DOI: 10.1023/A:1006380021658.10.1023/A:1006380021658Search in Google Scholar

29. Romeo, V., Ziino, M., Giuffrida, D., Condurso, C., & Verzera, A. (2007). Flavour profile of capers (Capparis spinosa L.) from the Eolian Archipelago by HS-SPME/GC-MS. Food Chemistry, 101, 1272-1278.10.1016/j.foodchem.2005.12.029Search in Google Scholar

30. Shahidi, F., & Gabon, J.E. (1990). Fate of sinigrin in methanol/ammonia/water-hexane extraction of B. juncea mustard seed. Journalof Food Science, 55, 793-795. DOI: 10.1111/ j.1365-2621.1990.tb05233.x.10.1111/j.1365-2621.1990.tb05233.xSearch in Google Scholar

31. Shroff, R., Vergara, F., Muck, A., Svatos, A., & Gershenzon, J. (2008). Nonuniform distribution of glucosinolates in Arabidopsis thaliana leaves has important consequences for plant defense. Proceedings of the National Academy ofSciences of the United States of America, 105, 6196-6201.10.1073/pnas.0711730105Search in Google Scholar

32. Tlili, N., Elfalleh, W., Saadaoui, E., Khaldi, A., Triki, S., & Nasri, N. (2011). The caper (Capparis L.): Ethnopharmacology, phytochemical and pharmacological properties. Fitoterapia, 82, 93-101. DOI: 10.1016/j. fitote.2010.09.006.Search in Google Scholar

33. Tomsone, L., Krūma, Z., Lepse, L., & Alsina, I. (2012). The application of hierarchical cluster analysis to clasify genotypes of horseradish (Armoracia rusticana L.) roots. In Conference program and abstracts of the 7th Baltic Conference on Food Science and Technology, 17-18 May 2012 (p. 102). Kaunas, Lithuania: Kaunas University of Technology.Search in Google Scholar

34. Velišek, J., & Cejpek, K. (2008). Phenolic compounds. In V. Šedivy (Ed.), Biosynthesis offood components (pp. 314-372). OSSIS.Search in Google Scholar

35. Whitmore, B.B., & Naidu, A.S. (2000). Glucosinolates. In A.S. Naidu (Ed.), NaturalFood Antimicrobial Systems (pp. 1-18). CRC Press LLC.10.1201/9781420039368.ch15Search in Google Scholar

36. Wittstock, U., & Halkier, B.A. (2002). Glucosinolate research in the Arabidopsis era. Trends in Plant Science, 7(6), 263-270. DOI: 10.1016/S1360-1385(02)02273-2.10.1016/S1360-1385(02)02273-2Search in Google Scholar

37. Wu, X., Kassie, F., & Mersch-Sundermann, V. (2005). Induction of apoptosis in tumor cells by naturally occurring sulfur-containing compounds. Mutation Research/Reviewsin Mutation Research, 589, 81-102. DOI: 10.1016/j.mrrev.2004.11.001.10.1016/j.mrrev.2004.11.00115795163Search in Google Scholar

eISSN:
2255-8535
ISSN:
1407-4427
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, Biotechnology, Plant Science, Ecology