Open Access

Monte Carlo characterization of the gold nanoparticles dose enhancement and estimation of the physical interactions weight in dose enhancement mechanism


Cite

Radiosensitization of the cancer cells by the heavy atoms of nanoparticles was the subject of some studies. But, the physical characterization to determine the weight of all interactions hasn’t been made numerically. The aim of this study was to calculate and compare the dose enhancement (DE) for different energies. The Monte Carlo simulation method was used in the current study. The influence of gold nanoparticles (GNP) size, beam quality, the GNP concentration, and dose inhomogeneity on the radiosensitization by DE was studied. A 35% increase in the photoelectric effect was observed while energy decreased from 18 MV to 300 kV. In the microscopic study which DE calculated in 30 µm from a single GNP, a 79% decreasing in DE within the first 1µm was seen and it declined to 2% in 30 µm from the GNP center. The effect was observed at small distances only. Our study revealed that the dose inhomogeneity around a nanoparticle is the main and very strong effect of DE on a macroscopic scale. In the location which 35% DE occurs most malignant cells survival will be effectively reduced. Our research indicates the need for further research.

eISSN:
1898-0309
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Biomedical Engineering, Physics, Technical and Applied Physics, Medical Physics