Open Access

Monte Carlo characterization of the gold nanoparticles dose enhancement and estimation of the physical interactions weight in dose enhancement mechanism


Cite

1. Mesbahi A. A review on gold nanoparticles radiosensitization effect in radiation therapy of cancer. Rep Pract Oncol Radiother. 2010;15(6):176-180.10.1016/j.rpor.2010.09.001386317724376946Search in Google Scholar

2. Qian X, Peng X-H, Ansari DO, et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol. 2008;26(1):83-90.10.1038/nbt137718157119Search in Google Scholar

3. Leung MK, Chow JCL, Chithrani BD, et al. Irradiation of gold nanoparticles by x-rays: Monte Carlo simulation of dose enhancements and the spatial properties of the secondary electrons production. Med Phys. 2011;38(2):624-631.10.1118/1.353962321452700Search in Google Scholar

4. Zaman RT, Diagaradjane P, Wang J, et al. In vivo detection of gold nanoshells in tumors using diffuse optical spectroscopy. IEEE Journal of Selected Topics in Quantum Electronics. 2007;14(6):1715-1720.10.1109/JSTQE.2007.910804Search in Google Scholar

5. Jeynes JC, Merchant MJ, Spindler A, et al. Investigation of gold nanoparticle radiosensitization mechanisms using a free radical scavenger and protons of different energies. Phys Med Biol. 2014;59(21):6431-6434.10.1088/0031-9155/59/21/643125296027Search in Google Scholar

6. Tsiamas P, Mishra P, Cifter F, et al. Low-Z linac targets for low-MV gold nanoparticle radiation therapy. Med Phys. 2014;41(2):021701. doi: 10.1118/1.485933510.1118/1.485933524506592Search in Google Scholar

7. Zygmanski P, Liu B, Tsiamas P, et al. Dependence of Monte Carlo microdosimetric computations on the simulation geometry of gold nanoparticles. Phys Med Biol. 2013;58(22):7961-7977.10.1088/0031-9155/58/22/796124169737Search in Google Scholar

8. McMahon SJ, Hyland WB, Muir MF, et al. Nanodosimetric effects of gold nanoparticles in megavoltage radiation therapy. Radiother Oncol. 2011;100(3):342-347.10.1016/j.radonc.2011.08.02621924786Search in Google Scholar

9. Zhang S, Li J, Lykotrafitis G, et al. Size-dependent endocytosis of nanoparticles. Adv Mater. 2009;21(4):419-424.10.1002/adma.200801393270987619606281Search in Google Scholar

10. Douglass M, Bezak E, Penfold S. Monte Carlo investigation of the increased radiation deposition due to gold nanoparticles using kilovoltage and megavoltage photons in a 3D randomized cell model. Med Phys. 2013;40(7):071710. doi: 10.1118/1.480815010.1118/1.480815023822414Search in Google Scholar

11 Jones BL, Krishnan S, Cho SH. Estimation of microscopic dose enhancement factor around gold nanoparticles by Monte Carlo calculations. Med Phys. 2010;37(3):3809-3816.10.1118/1.345570320831089Search in Google Scholar

12. Xiao QF, Zheng XP, Bu WB, Ge et al. A Core/Satellite Multifunctional Nanotheranostic for in Vivo Imaging and Tumor Eradication by Radiation/Photothermal Synergistic Therapy. J Am Chem Soc. 2013;135(35):13041-13048.10.1021/ja404985w23924214Search in Google Scholar

13. Ghasemi-Jangjoo A, Ghiasi H. Monte Carlo study on the gold and gadolinium nanoparticles radiosensitizer effect in the prostate 125I seeds radiotherapy. Pol J Med Phys Eng. 2019;25(3):165-16910.2478/pjmpe-2019-0022Search in Google Scholar

14. Wen L, Chen L, Zheng SM, et al. Ultrasmall Biocompatible WO3-x Nanodots for Multi-Modality Imaging and Combined Therapy of Cancers. Adv Mater. 2016;28(25):5072-5079.10.1002/adma.20150642827136070Search in Google Scholar

15. McKinnon S, Guatelli S, Incerti S, et al. Local dose enhancement of proton therapy by ceramic oxide nanoparticles investigated with Geant4 simulations. Phys Medica. 2016;32(12):1584-1593.10.1016/j.ejmp.2016.11.11227916516Search in Google Scholar

16. Taggart LE, McMahon SJ, Butterworth KT, et al. Protein disulphide isomerase as a target for nanoparticle-mediated sensitisation of cancer cells to radiation. Nanotechnology. 2016;27(21):215101.10.1088/0957-4484/27/21/21510127080849Search in Google Scholar

17. Jain S, Coulter JA, Hounsell AR, et al. Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies. Int J Radiat Oncol Biol Phys. 2011;79(2):531-539.10.1016/j.ijrobp.2010.08.044301517221095075Search in Google Scholar

18. Butterworth KT, McMahon SJ, Taggart LE, Prise KM. Radiosensitization by gold nanoparticles: effective at megavoltage energies and potential role of oxidative stress. Transl Cancer Res. 2013;2(4):269-279.Search in Google Scholar

19. Du FY, Zhang LR, Zhang L, et al. Engineered gadolinium-doped carbon dots for magnetic resonance imaging-guided radiotherapy of tumors. Biomaterials. 2017;121:109-120.10.1016/j.biomaterials.2016.07.00828086179Search in Google Scholar

20. Ghasemi JA, Ghiasi H, Mesbahi A. A Monte Carlo study on the radio-sensitization effect of gold nanoparticles in brachytherapy of prostate by 103Pd seeds. Pol J Med Phys Eng. 2019;25(2):87-93.10.2478/pjmpe-2019-0012Search in Google Scholar

21. Xie WZ, Friedland WF, Li WB, et al. Simulation on the molecular radiosensitization effect of gold nanoparticles in cells irradiated by x-rays. Phys Med Biol. 2015;60(16):6195-6212.10.1088/0031-9155/60/16/619526226203Search in Google Scholar

22. Mi P, Dewi N, Yanagie H, et al. Hybrid calcium phosphate-polymeric micelles incorporating gadolinium chelates for imaging-guided gadolinium neutron capture tumor therapy. ACS Nano. 2015;9(6):5913-5921.10.1021/acsnano.5b0053226033034Search in Google Scholar

23. Dewi N, Mi P, Yanagie H, et al. In vivo evaluation of neutron capture therapy effectivity using calcium phosphate-based nanoparticles as Gd-DTPA delivery agent. J Cancer Res Clin Oncol. 2016;142(4):767-775.10.1007/s00432-015-2085-026650198Search in Google Scholar

24. Le Duc G, Miladi I, Alric C, et al. Toward an image-guided microbeam radiation therapy using gadolinium-based nanoparticles. ACS Nano. 2011;5(12):9566-9574.10.1021/nn202797h22040385Search in Google Scholar

25. Bridot J-L, Dayde D, Rivière C, et al. Hybrid gadolinium oxide nanoparticles combining imaging and therapy. J Mater Chem. 2009;19:2328-2335.10.1039/b815836cSearch in Google Scholar

26. Seo S-J, Han S-M, Cho J-H, et al. Enhanced production of reactive oxygen species by gadolinium oxide nanoparticles under core– inner-shell excitation by proton or monochromatic X-ray irradiation: implication of the contribution from the interatomic de-excitation-mediated nanoradiator effect to dose enhancement. Radiat Environ Bioph. 2015;54:423-431.10.1007/s00411-015-0612-726242374Search in Google Scholar

27. Mignot A, Truillet C, Lux F, et al. A Top-Down synthesis route to ultrasmall multifunctional Gd-Based silica nanoparticles for theranostic applications. Chem - Eur J. 2013;19:6122-6136.10.1002/chem.20120300323512788Search in Google Scholar

eISSN:
1898-0309
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Biomedical Engineering, Physics, Technical and Applied Physics, Medical Physics