Comparative Studies of Electrospinning and Solution Blow Spinning Processes for the Production of Nanofibrous Poly(L-Lactic Acid) Materials for Biomedical Engineering

Open access

Abstract

Comparative statistical analysis of the infiuence of processing parameters, for electrospinning (ES) and solution blow spinning (SBS) processes, on nanofibrous poly(L-lactic acid) (PLLA) material morphology and average fiber diameter was conducted in order to identify the key processing parameter for tailoring the product properties. Further, a comparative preliminary biocompatibility evaluation was performed. Based on Design of Experiment (DOE) principles, analysis of standard effects of voltage, air pressure, solution feed rate and concentration, on nanofibers average diameter was performed with the Pareto’s charts and the best fitted surface charts. Nanofibers were analyzed by scanning electron microscopy (SEM). The preliminary biocompatibility comparative tests were performed based on SEM microphotographs of CP5 cells cultured on materials derived from ES and SBS. Polymer solution concentration was identified as the key parameter infiuencing morphology and dimensions of nanofibrous mat produced from both techniques. In both cases, when polymer concentration increases the average fiber diameter increase. The preliminary biocompatibility test suggests that nanofibers produced by ES as well as SBS are suitable as the biomedical engineering scaffold material.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Formhals A. (1934). U.S. Patent No. 1975504. United States Patent Office.

  • 2. Ciach T. & Gradoń L. (1996). Highly efficient filtering materials. J. Aerosol Sci. 27(1) S613-S614. DOI: 10.1016/00218502(96)00379-5.

  • 3. Huang Z.M. Zhang Y.Z. Kotaki M. & Ramakrishna S. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63(15) 2223–2253. DOI: 10.1016/S0266-3538(03)00187-7.

  • 4. Kim F.S. Ren G. & Jenekhe S.A. (2010). One-Dimensional Nanostructures of p-Conjugated Molecular Systems: Assembly Properties and Applications from Photovoltaics Sensors and Nanophotonics to Nanoelectronics. Chem. Mater. 23(3) 682–732. DOI: 10.1021/cm102772x.

  • 5. Niu R. Qiao J. Yu H. Nie J. & Yang D. (2011). Electrospun composite nanofibrous membrane as wound dressing with good adhesion. Front. Chem. China 6(3) 221–226. DOI: 10.1007/s11458-011-0244-7.

  • 6. Okuda T. Tominaga K. & Kidoaki S. (2010). Time-programmed dual release formulation by multilayered drug-loaded nanofiber meshes. J. Control. Release. 143(2) 258–264. DOI: 10.1016/j.jconrel.2009.12.029.

  • 7. Koh H.S. Yong T. Chan C.K. & Ramakrishna S. (2008). Enhancement of neurite outgrowth using nano-structured scaffolds coupled with laminin. Biomaterials. 29(26) 3574–3582. DOI: 10.1016/j.biomaterials.2008.05.014.

  • 8. Mo X.M. Xu C.Y. Kotaki M. & Ramakrishna S. (2004). Electrospun P(LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials 25(10) 1883–1890. DOI: 10.1016/j. biomaterials.2003.08.042.

  • 9. Jang J.H. Castano O. & Kim H.W. (2009). Electrospun materials as potential platforms for bone tissue engineering. Adv. Drug Deliver. Rev. 61(12) 1065–1083. DOI: 10.1016/j. addr.2009.07.008.

  • 10. Ramakrishna S. Fujihara K. Teo W.E. Lim T.C. & Ma Z. (2005). An Introduction to Electrospinning and Nanofibers. World Scientific Publishing. Singapore.

  • 11. Ravichandran R. Sundarrajan S. Venugopal J.R. Kukherjee S. & Ramakrishna S. (2012). Advances in Polymeric Systems for Tissue Engineering and Biomedical Applications. Macromol. Biosci. 12(3) 286–311. DOI: 10.1002/ mabi.201100325.

  • 12. Li D. & Xia Y. (2004). Electrospinning of Nanofibers: Reinventing the Wheelfi Adv. Mater. 16(14) 1151–1170. DOI: 10.1002/adma.200400719.

  • 13. Persano L. Camposeo A. Tekmen C. & Pisignano D. (2013). Industrial Upscaling of Electrospinning and Applications of Polymer Nanofibers: A Review. Macromol. Mater. Eng. 298(5) 504–520. DOI: 10.1002/mame.201200290.

  • 14. Angammana C.J. & Jayaram S.H. (2011). The Effects of Electric Fields on the Multijet Electrospinning Process and Fiber Morphology. IEEE T. Ind. Appl. 47(2) 1028–1035. DOI: 10.1109/TIA.2010.2103392.

  • 15. Niu H. Wang X. & Lin T. (2012). Upward Needleless Electrospinning of Nanofibers. J. Eng. Fiber Fabr. Special Issue – July 17–22.

  • 16. Medeiros E.S. Glenn G.M. Klamczynski A.P. Orts W.J. & Mattoso L.H.C. (2009). Solution Blow Spinning: A New Method to Produce Micro- and Nanofibers from Polymer Solutions. J. Appl. Polym. Sci. 113 2322–2330. DOI: 10.1002/ app.30275.

  • 17. Oliveira J.E. Moraes E.A. Costa R.G.F. Afonso A.S. Mattoso L.H.C. Orts W.J. & Medeiros E.S. (2011). Nano and Submicrometric Fibers of Poly(DL-Lactide) Obtained by Solution Blow Spinning: Process and Solution Variables. J. Appl. Polym. Sci. 122(5) 3396–3405. DOI: 10.1002/app.34410.

  • 18. Sabbatier G. Le Nouën D. Chevallier P. Durand B. Laroche G. & Dieval F. (2012). Air spun poly(lactic acid) nanofiber scaffold degradation for vascular tissue engineering: A 1H NMR study. Polym. Degrad. Stabil. 97(8) 1520–1526. DOI: 10.1016/j.polymderadstab.2012.04.017.

  • 19. Gupta B. Revagade N. & Hilborn J. (2007). Poly(lactic acid) fiber: An overview. Prog. Polym. Sci. 32(4) 455–482. DOI: 10.1016/j.progpolymsci.2007.01.005.

  • 20. Wojasiński M. Faliszewski K. & Ciach T. (2013). Electrospinning Production of PLLA Fibrous Scaffolds for Tissue Engineering. CoMT. 4(1) 9–15.

  • 21. Pilarek M. Grabowska I. Senderek I. Wojasiński M. Janicka J. Janczyk-Ilach K. & Ciach T. (2014). Liquid perfiuorochemical-supported hybrid cell culture system fo proliferation of chondrocytes on ?brous polylactide scaffolds. Bioproc. Biosys. Eng. In press 1–9. DOI: 10.1007/s00449-014-1143-3.

  • 22. Bhardwaj N. Kundu S.C. (2010). Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv. 28(3) 325–347. DOI: 10.1016/k.biotechadv.2010.01.004.

  • 23. Zong X. Kim K. Fang D. Ran S. Hsiao B.S. Chu B. (2002). Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer. 43(16) 4403–4412. DOI: 10.1016/S0032-3861(02)00275-6.

  • 24. Oliveira J.E. Mattoso L.H.C. Orts W.J. Medeiros E.S. (2013). Structural and morphological characterization of micro and nanofibers produced by electrospinning and solution blow spinning: A comparative study. Adv. Mater. Sci. Eng. Article number 409572. DOI: 10.1155/2013/409572.

  • 25. Deitzel J.M. Kleinmeyer J. Harris D. Beck Tan N.C. (2001). The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer. 42(1) 261–272.

  • 26. Lannutti J. Reneker D. Ma T. Tomasko D. & Farson D. (2007). Electrospinning for tissue engineering scaffolds. Mat. Sci. Eng. C 27(3) 504–509. DOI: 10.1016/j.mscc.2006.05.019.

  • 27. Beachley V. & Wen X. (2010). Polymer nanofibrous structures: Fabrication biofunctionalization and cell interactions. Prog. Polym. Sci. 35(7) 868–892. DOI: 10.1016/j. progpolymsci.2010.03.003.

  • 28. Song X. Ling F. Ma L. Yang C. & Chen X. (2013). Electrospun hydroxyapatite grafted poly(L-lactide)/poly(lactic-co-glycolic acid) nanofibers for guided bone regeneration membrane. Compos. Sci. Technol. 79 8–14. DOI: 10.1016/j. compscitech.2013.02.014.

  • 29. Tucker N. Stanger J.J. Staiger M.P. Razzaq H. & Hoffman K. (2012). The History of the Science and Technology of Electrospinning from 1600 to 1995. J. Eng. Fiber Fabr. Special Issue – July 63–73.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 471 288 4
PDF Downloads 221 149 5