Open Access

Comparative Studies of Electrospinning and Solution Blow Spinning Processes for the Production of Nanofibrous Poly(L-Lactic Acid) Materials for Biomedical Engineering


Cite

1. Formhals, A. (1934). U.S. Patent No. 1,975,504. United States Patent Office.Search in Google Scholar

2. Ciach, T. & Gradoń, L. (1996). Highly efficient filtering materials. J. Aerosol Sci. 27(1), S613-S614. DOI: 10.1016/00218502(96)00379-5.Search in Google Scholar

3. Huang, Z.M., Zhang, Y.Z., Kotaki, M. & Ramakrishna, S. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63(15), 2223–2253. DOI: 10.1016/S0266-3538(03)00187-7.Search in Google Scholar

4. Kim, F.S., Ren, G. & Jenekhe, S.A. (2010). One-Dimensional Nanostructures of p-Conjugated Molecular Systems: Assembly, Properties, and Applications from Photovoltaics, Sensors and Nanophotonics to Nanoelectronics. Chem. Mater. 23(3), 682–732. DOI: 10.1021/cm102772x.10.1021/cm102772xSearch in Google Scholar

5. Niu, R., Qiao, J., Yu, H., Nie, J. & Yang, D. (2011). Electrospun composite nanofibrous membrane as wound dressing with good adhesion. Front. Chem. China 6(3), 221–226. DOI: 10.1007/s11458-011-0244-7.10.1007/s11458-011-0244-7Search in Google Scholar

6. Okuda, T., Tominaga, K. & Kidoaki, S. (2010). Time-programmed dual release formulation by multilayered drug-loaded nanofiber meshes. J. Control. Release. 143(2), 258–264. DOI: 10.1016/j.jconrel.2009.12.029.10.1016/j.jconrel.2009.12.02920074599Search in Google Scholar

7. Koh, H.S., Yong, T., Chan, C.K. & Ramakrishna, S. (2008). Enhancement of neurite outgrowth using nano-structured scaffolds coupled with laminin. Biomaterials. 29(26), 3574–3582. DOI: 10.1016/j.biomaterials.2008.05.014.10.1016/j.biomaterials.2008.05.01418533251Search in Google Scholar

8. Mo, X.M., Xu, C.Y., Kotaki, M. & Ramakrishna, S. (2004). Electrospun P(LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials 25(10), 1883–1890. DOI: 10.1016/j. biomaterials.2003.08.042.Search in Google Scholar

9. Jang, J.H., Castano, O. & Kim, H.W. (2009). Electrospun materials as potential platforms for bone tissue engineering. Adv. Drug Deliver. Rev. 61(12), 1065–1083. DOI: 10.1016/j. addr.2009.07.008.Search in Google Scholar

10. Ramakrishna, S., Fujihara, K., Teo, W.E., Lim, T.C. & Ma, Z. (2005). An Introduction to Electrospinning and Nanofibers. World Scientific Publishing. Singapore.10.1142/5894Search in Google Scholar

11. Ravichandran, R., Sundarrajan, S., Venugopal, J.R., Kukherjee, S. & Ramakrishna, S. (2012). Advances in Polymeric Systems for Tissue Engineering and Biomedical Applications. Macromol. Biosci. 12(3), 286–311. DOI: 10.1002/ mabi.201100325.10.1002/mabi.20110032522278779Search in Google Scholar

12. Li, D. & Xia, Y. (2004). Electrospinning of Nanofibers: Reinventing the Wheelfi Adv. Mater. 16(14), 1151–1170. DOI: 10.1002/adma.200400719.10.1002/adma.200400719Search in Google Scholar

13. Persano, L., Camposeo, A., Tekmen, C. & Pisignano, D. (2013). Industrial Upscaling of Electrospinning and Applications of Polymer Nanofibers: A Review. Macromol. Mater. Eng. 298(5), 504–520. DOI: 10.1002/mame.201200290.10.1002/mame.201200290Search in Google Scholar

14. Angammana, C.J. & Jayaram, S.H. (2011). The Effects of Electric Fields on the Multijet Electrospinning Process and Fiber Morphology. IEEE T. Ind. Appl. 47(2), 1028–1035. DOI: 10.1109/TIA.2010.2103392.10.1109/TIA.2010.2103392Search in Google Scholar

15. Niu, H., Wang, X. & Lin, T. (2012). Upward Needleless Electrospinning of Nanofibers. J. Eng. Fiber Fabr. Special Issue – July, 17–22.10.1177/155892501200702S03Search in Google Scholar

16. Medeiros, E.S., Glenn, G.M., Klamczynski, A.P., Orts, W.J. & Mattoso, L.H.C. (2009). Solution Blow Spinning: A New Method to Produce Micro- and Nanofibers from Polymer Solutions. J. Appl. Polym. Sci. 113, 2322–2330. DOI: 10.1002/ app.30275.10.1002/app.30275Search in Google Scholar

17. Oliveira, J.E., Moraes, E.A., Costa, R.G.F., Afonso, A.S., Mattoso, L.H.C., Orts, W.J. & Medeiros, E.S. (2011). Nano and Submicrometric Fibers of Poly(D,L-Lactide) Obtained by Solution Blow Spinning: Process and Solution Variables. J. Appl. Polym. Sci. 122(5), 3396–3405. DOI: 10.1002/app.34410.10.1002/app.34410Search in Google Scholar

18. Sabbatier, G., Le Nouën, D., Chevallier, P., Durand, B., Laroche, G. & Dieval, F. (2012). Air spun poly(lactic acid) nanofiber scaffold degradation for vascular tissue engineering: A 1H NMR study. Polym. Degrad. Stabil. 97(8), 1520–1526. DOI: 10.1016/j.polymderadstab.2012.04.017.Search in Google Scholar

19. Gupta, B., Revagade, N. & Hilborn, J. (2007). Poly(lactic acid) fiber: An overview. Prog. Polym. Sci. 32(4), 455–482. DOI: 10.1016/j.progpolymsci.2007.01.005.10.1016/j.progpolymsci.2007.01.005Search in Google Scholar

20. Wojasiński, M., Faliszewski, K. & Ciach, T. (2013). Electrospinning Production of PLLA Fibrous Scaffolds for Tissue Engineering. CoMT. 4(1), 9–15.Search in Google Scholar

21. Pilarek, M., Grabowska, I., Senderek, I., Wojasiński, M., Janicka, J., Janczyk-Ilach, K. & Ciach, T. (2014). Liquid perfiuorochemical-supported hybrid cell culture system fo proliferation of chondrocytes on ?brous polylactide scaffolds. Bioproc. Biosys. Eng. In press, 1–9. DOI: 10.1007/s00449-014-1143-3.10.1007/s00449-014-1143-3Search in Google Scholar

22. Bhardwaj, N., Kundu, S.C. (2010). Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv., 28(3), 325–347. DOI: 10.1016/k.biotechadv.2010.01.004.Search in Google Scholar

23. Zong, X., Kim, K., Fang, D., Ran, S., Hsiao, B.S., Chu, B. (2002). Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer. 43(16), 4403–4412. DOI: 10.1016/S0032-3861(02)00275-6.10.1016/S0032-3861(02)00275-6Search in Google Scholar

24. Oliveira, J.E., Mattoso, L.H.C., Orts, W.J., Medeiros, E.S. (2013). Structural and morphological characterization of micro and nanofibers produced by electrospinning and solution blow spinning: A comparative study. Adv. Mater. Sci. Eng. Article number 409572. DOI: 10.1155/2013/409572.10.1155/2013/409572Search in Google Scholar

25. Deitzel, J.M., Kleinmeyer, J., Harris, D., Beck Tan, N.C. (2001). The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer. 42(1), 261–272.10.1016/S0032-3861(00)00250-0Search in Google Scholar

26. Lannutti, J., Reneker, D., Ma, T., Tomasko, D. & Farson, D. (2007). Electrospinning for tissue engineering scaffolds. Mat. Sci. Eng. C, 27(3), 504–509. DOI: 10.1016/j.mscc.2006.05.019.Search in Google Scholar

27. Beachley, V. & Wen, X. (2010). Polymer nanofibrous structures: Fabrication, biofunctionalization, and cell interactions. Prog. Polym. Sci. 35(7), 868–892. DOI: 10.1016/j. progpolymsci.2010.03.003.Search in Google Scholar

28. Song, X., Ling, F., Ma, L., Yang, C. & Chen, X. (2013). Electrospun hydroxyapatite grafted poly(L-lactide)/poly(lactic-co-glycolic acid) nanofibers for guided bone regeneration membrane. Compos. Sci. Technol. 79, 8–14. DOI: 10.1016/j. compscitech.2013.02.014.Search in Google Scholar

29. Tucker, N., Stanger, J.J., Staiger, M.P., Razzaq, H. & Hoffman, K. (2012). The History of the Science and Technology of Electrospinning from 1600 to 1995. J. Eng. Fiber Fabr., Special Issue – July, 63–73.10.1177/155892501200702S10Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering