The possibilities of stem cell application in regenerative medicine

Open access

Abstract

Stem cells are characterized by their ability to self-renew and differentiate into various cell types. They offer great potential for a wide range of applications, however, medical studies on the use of embryonal stem cells are largely limited to bioethical issues searching for alternative sources of stem cells, which include isolating cells from adult organisms or inducing pluripotentiality of somatic cells by administration of transcription factors. Nowadays, stem cells are used to study the mechanisms of cell differentiation and treat diseases that are commonly considered to be incurable, such as diabetes and neurodegenerative diseases, as well as enable regeneration of skin damage and myocardium. This review introduces the subject of stem cells, their sources and application in regenerative medicine.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Angelos MG Kaufman DS. Pluripotent stem cell applications for regenerative medicine. Curr Opin Organ Transplant 2015; 20(6):663-70 DOI 10.1097/MOT.0000000000000244.

  • 2. Paździorek PR. Mathematical model of stem cell differentiation and tissue regeneration with stochastic noise. Bull Math Biol 2014; 76(7):1642-69 DOI 10.1007/s11538-014-9971-5.

  • 3. Jaenisch R Young R. Stem cells the molecular circuitry of pluripotency and nuclear reprogramming. Cell 2008; 13: 567-582 DOI 10.1016/j.cell.2008.01.015.

  • 4. Evans MJ Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981; 292(5819):154-6.

  • 5. Kaufman MH Robertson EJ Handyside AH Evans MJ. Establishment of pluripotential cell lines from haploid mouse embryos. J Embryol Exp Morphol 1983; 73:249-61.

  • 6. Thomson JA Kalishman J Golos TG Durning M Harris CP Becker RA Hearn JP. Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci USA 1995; 92(17):7844-8.

  • 7. Thomson JA Itskovitz-Eldor J Shapiro SS Waknitz MA Swiergiel JJ Marshall VS Jones JM. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282(5391):1145-7.

  • 8. Tabei I Hashimoto H Ishiwata I Tokieda Y Tachibana T Akahori M et al. New approach for the establishment of an hepatocyte cell line derived from rat early embryonic stem cells. Hum Cell 2003; 16(1):39-46.

  • 9. Itskovitz-Eldor J Schuldiner M Karsenti D Eden A Yanuka O Amit M et al. Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med 2000; 6(2):88-95.

  • 10. Pera MF Tam PP. Extrinsic regulation of pluripotent stem cells. Nature 2010; 465(7299):713-20 DOI 10.1038/nature09228.

  • 11. Darr H Mayshar Y Benvenisty N. Overexpression of NANOG in human ES cells enables feeder-free growth while inducing primitive ectoderm features. Development 2006; 133(6):1193-201.

  • 12. Massagué J Seoane J Wotton D. Smad transcription factors. Genes Dev 2005; 19(23):2783-810.

  • 13. Lie KH Tuch BE Sidhu KS. Suppression of NANOG induces efficient differentiation of human embryonic stem cells to pancreatic endoderm. Pancreas 2012; 41(1):54-64 DOI 10.1097/MPA.0b013e31822362e4.

  • 14. Kee K Gonsalves JM Clark AT Pera RA. Bone morphogenetic proteins induce germ cell differentiation from human embryonic stem cells. Stem Cells Dev 2006; 15(6):831-7.

  • 15. Eiselleova L Matulka K Kriz V Kunova M Schmidtova Z Neradil J et al. A complex role for FGF-2 in self-renewal survival and adhesion of human embryonic stem cells. Stem Cells 2009; 27(8):1847-57.

  • 16. ten Berge D Kurek D Blauwkamp T Koole W Maas A Eroglu E et al. Embryonic stem cells require Wnt proteins to prevent differentiation to epiblast stem cells. Nat Cell Biol 2011; 13(9):1070-5 DOI 10.1038/ncb2314.

  • 17. Wu CH Nusse R. Ligand receptor interactions in the Wnt signaling pathway in Drosophila. J Biol Chem 2002; 277(44):41762-9.

  • 18. Artavanis-Tsakonas S Rand MD Lake RJ. Notch signaling: cell fate control and signal integration in development. Science 1999; 284(5415):770-6.

  • 19. Kobayashi T Kageyama R. Hes1 regulates embryonic stem cell differentiation by suppressing Notch signaling. Genes Cells 2010; 15(7):689-98 DOI 10.1111/j.1365-2443.2010.01413.x.

  • 20. Schuldiner M Yanuka O Itskovitz-Eldor J Melton DA Benvenisty N. Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 2000; 10;97(21):11307-12.

  • 21. Schuldiner M Eiges R Eden A Yanuka O Itskovitz-Eldor J Goldstein RS Benvenisty N. Induced neuronal differentiation of human embryonic stem cells. Brain Res 2001; 913(2):201-5.

  • 22. Chadwick K Wang L Li L Menendez P Murdoch B Rouleau A Bhatia M. Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells. Blood 2003; 102(3):906-15.

  • 23. Prado-Lopez S Conesa A Armiñán A Martínez-Losa M Escobedo-Lucea C Gandia C et al. Hypoxia promotes efficient differentiation of human embryonic stem cells to functional endothelium. Stem Cells 2010; 28(3):407-18 DOI 10.1002/stem.295.

  • 24. Kurpisz M. Próby przedkliniczne i kliniczne zastosowania komórek macierzystych do regeneracji mięśnia sercowego. Postępy biol komórki 2010; 37(1):209-223 Polish [Stem cells for heart regeneration – preclinical and clinical trials].

  • 25. Miura Y. Human bone marrow mesenchymal stromal/stem cells: current clinical applications and potential for hematology. Int J Hematol 2015; [Epub ahead of print] DOI 10.1007/s12185-015-1920-z.

  • 26. Sikora MA Olszewski WL. Komórki macierzyste – biologia i zastosowanie terapeutyczne. Postępy Hig Med Dosw 2004; 58:202-208 Polish [Stem cells – biology and therapeutic application].

  • 27. Wu Y Wang J Scott PG Tredget EE. Bone marrow-derived stem cells in wound healing: a review. Wound Repair Regen 2007; 15 Suppl 1:S18-26 DOI 10.1111/j.1524-475X.2007.00221.x.

  • 28. Oswald J Boxberger S Jørgensen B Feldmann S Ehninger G Bornhäuser M Werner C. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells 2004; 22(3):377-84.

  • 29. Jones EA Kinsey SE English A Jones RA Straszynski L Meredith DM et al. Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells. Arthritis Rheum 2002; 46(12):3349-60.

  • 30. Barry F Boynton R Murphy M Haynesworth S Zaia J. The SH-3 and SH-4 antibodies recognize distinct epitopes on CD73 from human mesenchymal stem cells. Biochem Biophys Res Commun 2001; 289(2):519-24.

  • 31. Barry FP Boynton RE Haynesworth S Murphy JM Zaia J. The monoclonal antibody SH-2 raised against human mesenchymal stem cells recognizes an epitope on endoglin (CD105). Biochem Biophys Res Commun 1999; 265(1):134-9.

  • 32. Bianco P Robey PG Simmons PJ. Mesenchymal stem cells: revisiting history concepts and assays. Cell Stem Cell 2008; 2(4):313-9 DOI 10.1016/j.stem.2008.03.002.

  • 33. Bartholomew A Sturgeon C Siatskas M Ferrer K McIntosh K Patil S et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 2002; 30(1):42-8.

  • 34. Wagner W Roderburg C Wein F Diehlmann A Frankhauser M Schubert R et al. Molecular and secretory profiles of human mesenchymal stromal cells and their abilities to maintain primitive hematopoietic progenitors. Stem Cells 2007; 25(10):2638-47.

  • 35. Hao QL Smogorzewska EM Barsky LW Crooks GM. In vitro identification of single CD34+CD38− cells with both lymphoid and myeloid potential. Blood 1998; 91(11):4145-51.

  • 36. Craig W Kay R Cutler RL Lansdorp PM. Expression of Thy-1 on human hematopoietic progenitor cells. J Exp Med 1993; 177(5):1331-42.

  • 37. Kirby GT Mills SJ Cowin AJ Smith LE. Stem cells for cutaneous wound healing. Biomed Res Int 2015; 2015:285869 DOI 10.1155/2015/285869.

  • 38. Baksh D Yao R Tuan RS. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 2007; 25(6):1384-92.

  • 39. Gluckman E Broxmeyer HA Auerbach AD Friedman HS Douglas GW Devergie A et al. Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med 1989; 321(17):1174-8.

  • 40. Roszek K Komoszyński M. Kontrola i kierunki różnicowania komórek macierzystych krwi pępowinowej oraz ich zastosowanie terapeutyczne. Postępy Hig Med Dosw 2008; 62:660-667 Polish [Regulation and direction of umbilical cord blood stem cells differentiation and their therapeutic application].

  • 41. Fujino H Hiramatsu H Tsuchiya A Niwa A Noma H Shiota M et al. Human cord blood CD34+ cells develop into hepatocytes in the livers of NOD/SCID/gamma(c)null mice through cell fusion. FASEB J 2007; 21(13):3499-510.

  • 42. Esposito M Lucariello A Costanzo C Fiumarella A Giannini A Riccardi G Riccio I. Differentiation of human umbilical cord-derived mesenchymal stem cells WJ-MSCs into chondrogenic cells in the presence of pulsed electromagnetic fields. In Vivo 2013; 27(4):495-500.

  • 43. Ciavarella S Dammacco F De Matteo M Loverro G Silvestris F. Umbilical cord mesenchymal stem cells: role of regulatory genes in their differentiation to osteoblasts. Stem Cells Dev 2009; 18(8):1211-20 DOI 10.1089/scd.2008.0340.

  • 44. Gang EJ Jeong JA Hong SH Hwang SH Kim SW Yang IH et al. Skeletal myogenic differentiation of mesenchymal stem cells isolated from human umbilical cord blood. Stem Cells 2004; 22(4):617-24.

  • 45. Talaei-Khozani T Borhani-Haghighi M Ayatollahi M Vojdani Z. An in vitro model for hepatocyte-like cell differentiation from Wharton’s jelly derived-mesenchymal stem cells by cell-base aggregates. Gastroenterol Hepatol Bed Bench 2015; 8(3):188-99.

  • 46. Qian Q Qian H Zhang X Zhu W Yan Y Ye S et al. 5-Azacytidine induces cardiac differentiation of human umbilical cord-derived mesenchymal stem cells by activating extracellular regulated kinase. Stem Cells Dev 2012; 21(1):67-75 DOI 10.1089/scd.2010.0519.

  • 47. McGuckin C Forraz N Baradez MO Basford C Dickinson AM Navran S Hartgerink JD. Embryonic-like stem cells from umbilical cord blood and potential for neural modeling. Acta Neurobiol Exp (Wars) 2006; 66(4):321-9.

  • 48. Fazzina R Mariotti A Procoli A Fioravanti D Iudicone P Scambia G et al. A new standardized clinical-grade protocol for banking human umbilical cord tissue cells. Transfusion 2015; 55(12):2864-2873 DOI 10.1111/trf.13277.

  • 49. Gang EJ Hong SH Jeong JA Hwang SH Kim SW Yang IH et al. In vitro mesengenic potential of human umbilical cord blood-derived mesenchymal stem cells. Biochem Biophys Res Commun 2004; 321(1):102-8.

  • 50. Hofmeister CC Zhang J Knight KL Le P Stiff PJ. Ex vivo expansion of umbilical cord blood stem cells for transplantation: growing knowledge from the hematopoietic niche. Bone Marrow Transplant 2007; 39(1):11-23.

  • 51. Körbling M Freireich EJ. Twenty-five years of peripheral blood stem cell transplantation. Blood 2011; 117(24):6411-6 DOI 10.1182/blood-2010-12-322214.

  • 52. Kasai M Kiyama Y Kawamura A. Application of peripheral blood stem cells (PBSC) mobilized by recombinant human granulocyte colony stimulating factor for allogeneic PBSC transplantation and the comparison of allogeneic PBSC transplantation and bone marrow transplantation. Transfus Apher Sci 2002; 26(2):121-7.

  • 53. Blau IW Basara N Lentini G Guenzelmann S Kirsten D Schmetzer B et al. Feasibility and safety of peripheral blood stem cell transplantation from unrelated donors: results of a single-center study. Bone Marrow Transplant 2001; 27(1):27-33.

  • 54. Hölig K. G-CSF in Healthy Allogeneic Stem Cell Donors. Transfus Med Hemother 2013; 40(4):225-35 DOI 10.1159/000354196.

  • 55. Francis MP Sachs PC Elmore LW Holt SE. Isolating adipose-derived mesenchymal stem cells from lipoaspirate blood and saline fraction. Organogenesis 2010; 6(1):11-4.

  • 56. Schäffler A Büchler C. Concise review: adipose tissue-derived stromal cells--basic and clinical implications for novel cell-based therapies. Stem Cells 2007; 25(4):818-27.

  • 57. Kim EH Heo CY. Current applications of adipose-derived stem cells and their future perspectives. World J Stem Cells 2014; 6(1):65-8 DOI 10.4252/wjsc.v6.i1.65.

  • 58. Priya N Sarcar S Majumdar AS SundarRaj S. Explant culture: a simple reproducible efficient and economic technique for isolation of mesenchymal stromal cells from human adipose tissue and lipoaspirate. J Tissue Eng Regen Med 2014; 8(9):706-16 DOI 10.1002/term.1569.

  • 59. Tobita M Orbay H Mizuno H. Adipose-derived stem cells: current findings and future perspectives. Discov Med 2011; 11(57):160-70.

  • 60. Pikuła M Marek-Trzonkowska N Wardowska A Renkielska A Trzonkowski P. Adipose tissue-derived stem cells in clinical applications. Expert Opin Biol Ther 2013; 13(10):1357-70 DOI 10.1517/14712598.2013.823153.

  • 61. Yu JM Bunnell BA Kang SK. Neural differentiation of human adipose tissue-derived stem cells. Methods Mol Biol 2011; 702:219-31 DOI 10.1007/978-1-61737-960-4_16.

  • 62. Cao Y Sun Z Liao L Meng Y Han Q Zhao RC. Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochem Biophys Res Commun 2005; 332(2):370-9.

  • 63. Salem SA Hwie AN Saim A Chee Kong CH Sagap I Singh R et al. Human adipose tissue derived stem cells as a source of smooth muscle cells in the regeneration of muscular layer of urinary bladder wall. Malays J Med Sci 2013; 20(4):80-7.

  • 64. Montarras D Morgan J Collins C Relaix F Zaffran S Cumano A et al. Direct isolation of satellite cells for skeletal muscle regeneration. Science 2005; 309(5743):2064-7.

  • 65. Archacka K Kowalski K Brzóska E. Czy komórki satelitowe są macierzyste? Postępy biochemii 2013; 59(2):205-218 Polish [Are satellite cells stem cells?].

  • 66. Morgan JE Partridge TA. Muscle satellite cells. Int J Biochem Cell Biol 2003; 35(8):1151-6.

  • 67. Williams JT Southerland SS Souza J Calcutt AF Cartledge RG. Cells isolated from adult human skeletal muscle capable of differentiating into multiple mesodermal phenotypes. Am Surg 1999; 65(1):22-6.

  • 68. Briggs R King TJ. Transplantation of Living Nuclei From Blastula Cells into Enucleated Frogs’ Eggs. Proc Natl Acad Sci USA 1952; 38(5):455-63.

  • 69. Gurdon JB. The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morphol 1962; 10:622-40.

  • 70. Takahashi K Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126(4):663-76.

  • 71. Takahashi K Tanabe K Ohnuki M Narita M Ichisaka T Tomoda K Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131(5):861-72.

  • 72. Yu J Vodyanik MA Smuga-Otto K Antosiewicz-Bourget J Frane JL Tian S et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318(5858):1917-20.

  • 73. Aasen T Raya A Barrero MJ Garreta E Consiglio A Gonzalez F et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 2008; 26(11):1276-84.

  • 74. Seki T Yuasa S Oda M Egashira T Yae K Kusumoto D et al. Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells. Cell Stem Cell 2010; 7(1):11-4 DOI 10.1016/j.stem.2010.06.003.

  • 75. Aoi T Yae K Nakagawa M Ichisaka T Okita K Takahashi K et al. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 2008; 321(5889):699-702.

  • 76. Cox JL Rizzino A. Induced pluripotent stem cells: what lies beyond the paradigm shift. Exp Biol Med (Maywood) 2010; 235(2):148-58 DOI 10.1258/ebm.2009.009267.

  • 77. Shapiro AM Lakey JR Ryan EA Korbutt GS Toth E Warnock GL et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 2000; 343(4):230-8.

  • 78. Ryan EA Lakey JR Paty BW Imes S Korbutt GS Kneteman NM et al. Successful islet transplantation: continued insulin reserve provides long-term glycemic control. Diabetes 2002; 51(7):2148-57.

  • 79. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993; 329(14):977-86.

  • 80. Lumelsky N Blondel O Laeng P Velasco I Ravin R McKay R. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 2001; 292(5520):1389-94.

  • 81. Assady S Maor G Amit M Itskovitz-Eldor J Skorecki KL Tzukerman M. Insulin production by human embryonic stem cells. Diabetes 2001; 50(8):1691-7.

  • 82. Fujikawa T Oh SH Pi L Hatch HM Shupe T Petersen BE. Teratoma formation leads to failure of treatment for type I diabetes using embryonic stem cell-derived insulin-producing cells. Am J Pathol 2005; 166(6):1781-91.

  • 83. Tateishi K He J Taranova O Liang G D’Alessio AC Zhang Y. Generation of insulin-secreting islet-like clusters from human skin fibroblasts. J Biol Chem 2008; 283(46):31601-7 DOI 10.1074/jbc.M806597200.

  • 84. Shim JH Kim J Han J An SY Jang YJ Son J et al. Pancreatic islet-like three-dimensional aggregates derived from human embryonic stem cells ameliorate hyperglycemia in streptozotocin-induced diabetic mice. Cell Transplant 2015; 24(10):2155-68 DOI 10.3727/096368914X685438.

  • 85. Ahrén B Holst JJ. The cephalic insulin response to meal ingestion in humans is dependent on both cholinergic and noncholinergic mechanisms and is important for postprandial glycemia. Diabetes 2001; 50(5):1030-8.

  • 86. Ogawa N List JF Habener JF Maki T. Cure of overt diabetes in NOD mice by transient treatment with anti-lymphocyte serum and exendin-4. Diabetes 2004; 53(7):1700-5.

  • 87. Nicholls JG Adams WB Eugenin J Geiser R Lepre M Luque JM Wintzer M. Why does the central nervous system not regenerate after injury? Surv Ophthalmol 1999; 43 Suppl 1:S136-41.

  • 88. Ingram V. Alzheimer’s Disease. American Scientists 2003; 91(4):312-21.

  • 89. Macphee GJA Stewart DA. Parkinson’s disease. Reviews in Clinical Gerontology 2001; 11(1):33-49.

  • 90. Okano H Sawamoto K. Neural stem cells: involvement in adult neurogenesis and CNS repair. Philos Trans R Soc Lond B Biol Sci 2008; 363(1500):2111-22.

  • 91. Blurton-Jones M Kitazawa M Martinez-Coria H Castello NA Müller FJ Loring JF et al. Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc Natl Acad Sci USA 2009; 106(32):13594-9 DOI 10.1073/pnas.0901402106.

  • 92. Zhang Q Wu HH Wang Y Gu GJ Zhang W Xia R. Neural stem cell transplantation decreases neuroinflammation in a transgenic mouse model of Alzheimer’s disease. J Neurochem 2015; [Epub ahead of print] DOI 10.1111/jnc.13413.

  • 93. Ager RR Davis JL Agazaryan A Benavente F Poon WW LaFerla FM Blurton-Jones M. Human neural stem cells improve cognition and promote synaptic growth in two complementary transgenic models of Alzheimer’s disease and neuronal loss. Hippocampus 2015; 25(7):813-26 DOI 10.1002/hipo.22405.

  • 94. Park HJ Lee PH Bang OY Lee G Ahn YH. Mesenchymal stem cells therapy exerts neuroprotection in a progressive animal model of Parkinson’s disease. J Neurochem 2008; 107(1):141-51 DOI 10.1111/j.1471-4159.2008.05589.x.

  • 95. Grealish S Diguet E Kirkeby A Mattsson B Heuer A Bramoulle Y et al. Human ESC-derived dopamine neurons show similar preclinical efficacy and potency to fetal neurons when grafted in a rat model of Parkinson’s disease. Cell Stem Cell 2014; 15(5):653-65 DOI 10.1016/j.stem.2014.09.017.

  • 96. Wernig M Zhao JP Pruszak J Hedlund E Fu D Soldner F et al. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Natl Acad Sci USA 2008; 105(15):5856-61 DOI 10.1073/pnas.0801677105.

  • 97. Bai L Lennon DP Caplan AI DeChant A Hecker J Kranso J et al. Hepatocyte growth factor mediates mesenchymal stem cell–induced recovery in multiple sclerosis models. Nat Neurosci 2012; 15(6):862-70 DOI 10.1038/nn.3109.

  • 98. Burt RK Loh Y Cohen B Stefoski D Balabanov R Katsamakis G et al. Autologous non-myeloablative haemopoietic stem cell transplantation in relapsing-remitting multiple sclerosis: a phase I/II study. Lancet Neurol 2009; 8(3):244-53 DOI 10.1016/S1474-4422(09)70017-1.

  • 99. Burt RK Balabanov R Han X Sharrack B Morgan A Quigley K et al. Association of nonmyeloablative hematopoietic stem cell transplantation with neurological disability in patients with relapsing-remitting multiple sclerosis. JAMA 2015; 313(3):275-84 DOI 10.1001/jama.2014.17986.

  • 100. Connick P Kolappan M Crawley C Webber DJ Patani R Michell AW et al. Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. Lancet Neurol 2012; 11(2):150-6 DOI 10.1016/S1474-4422(11)70305-2.

  • 101. Cabanes C Bonilla S Tabares L Martínez S. Neuroprotective effect of adult hematopoietic stem cells in a mouse model of motoneuron degeneration. Neurobiol Dis 2007; 26(2):408-18.

  • 102. Vercelli A Mereuta OM Garbossa D Muraca G Mareschi K Rustichelli D et al. Human mesenchymal stem cell transplantation extends survival improves motor performance and decreases neuroinflammation in mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 2008; 31(3):395-405 DOI 10.1016/j.nbd.2008.05.016.

  • 103. Mazzini L Mareschi K Ferrero I Miglioretti M Stecco A Servo S et al. Mesenchymal stromal cell transplantation in amyotrophic lateral sclerosis: a long-term safety study. Cytotherapy 2012; 14(1):56-60 DOI 10.3109/14653249.2011.613929.

  • 104. Mazzini L Gelati M Profico DC Sgaravizzi G Projetti Pensi M Muzi G et al. Human neural stem cell transplantation in ALS: initial results from a phase I trial. J Transl Med 2015; 13:17 DOI 10.1186/s12967-014-0371-2.

  • 105. Alonso L Fuchs E. Stem cells of the skin epithelium. Proc Natl Acad Sci USA 2003; 100 Suppl 1:11830-5.

  • 106. Blanpain C Fuchs E. Epidermal stem cells of the skin. Annu Rev Cell Dev Biol 2006; 22:339-73.

  • 107. Pikuła M Trzonkowski P. Biologia komórek macierzystych naskórka oraz ich znaczenie w medycynie. Postepy Hig Med Dosw 2009; 63:449-456 Polish [Biology of epidermal stem cells: Impact on medicine].

  • 108. Barthel R Aberdam D. Epidermal stem cells. J Eur Acad Dermatol Venereol 2005; 19(4):405-13.

  • 109. Pikuła M Imko-Walczuk B Nowacka-Pikuła D Okuniewska A Langa P Jaśkiewicz J Trzonkowski P. Możliwości hodowli keratynocytów oraz komórek macierzystych naskórka i ich zastosowania w leczeniu trudno gojących się ran. Przegl Dermatol 2012; 99:222–229 Polish [The culture of keratinocytes and epidermal stem cells and their possible application in the treatment of chronic wounds].

  • 110. Liu L Yu Y Hou Y Chai J Duan H Chu W et al. Human umbilical cord mesenchymal stem cells transplantation promotes cutaneous wound healing of severe burned rats. PLoS One 2014; 9(2):e88348 DOI 10.1371/journal.pone.0088348.

  • 111. Mirzaei H Sahebkar A Avan A Jaafari MR Salehi R Salehi H et al. Application of mesenchymal stem cells in melanoma: a potential therapeutic strategy for delivery of targeted agents. Curr Med Chem 2015; [Epub ahead of print] DOI 10.2174/0929867323666151217122033.

  • 112. Fukuoka H Suga H. Hair Regeneration Treatment Using Adipose-Derived Stem Cell Conditioned Medium: Follow-up With Trichograms. Eplasty 2015; 15:e10.

  • 113. Ibrahim ZA Eltatawy RA Ghaly NR Abd El-Naby NM Abou El Fetouh HM Abd Elateef AE et al. Autologus bone marrow stem cells in atrophic acne scars: A pilot study. J Dermatolog Treat 2015; 26(3):260-5 DOI 10.3109/09546634.2014.946379.

  • 114. Shabbir A Cox A Rodriguez-Menocal L Salgado M Van Badiavas E. Mesenchymal stem cell exosomes induce proliferation and migration of normal and chronic wound fibroblasts and enhance angiogenesis in vitro. Stem Cells Dev 2015; 24(14):1635-47 DOI 10.1089/scd.2014.0316.

  • 115. Falanga V Iwamoto S Chartier M Yufit T Butmarc J Kouttab N et al. Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Eng 2007; 13(6):1299-312.

  • 116. Yoshikawa T Mitsuno H Nonaka I Sen Y Kawanishi K Inada Y et al. Wound therapy by marrow mesenchymal cell transplantation. Plast Reconstr Surg 2008; 121(3):860-77 DOI 10.1097/01.prs.0000299922.96006.24.

  • 117. Caplice NM Gersh BJ. Stem cells to repair the heart: a clinical perspective. Circ Res 2003; 10;92(1):6-8.

  • 118. Fujita Y Inokuma D Abe R Sasaki M Nakamura H Shimizu T Shimizu H. Conversion from human haematopoietic stem cells to keratinocytes requires keratinocyte secretory factors. Clin Exp Dermatol 2012; 37(6):658-64 DOI 10.1111/j.1365-2230.2011.04312.x.

  • 119. Roger VL Go AS Lloyd-Jones DM Adams RJ Berry JD Brown TM et al; American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics - 2011 update: a report from the American Heart Association. Circulation 2011; 123(4):e18-e209 DOI 10.1161/CIR.0b013e3182009701.

  • 120. Walsh RA. Molecular and cellular biology of the normal hypertrophied and failing heart. w: O’Rouke RA ed. The Heart Arteries and Veins. 10th ed. New York: McGraw-Hill 2001; 115–118.

  • 121. Jugdutt BI. Ventricular remodeling after infarction and the extracellular collagen matrix: when is enough enough? Circulation 2003; 108(11):1395-403.

  • 122. Weber KT Anversa P Armstrong PW Brilla CG Burnett JC Jr Cruickshank JM et al. Remodeling and reparation of the cardiovascular system. J Am Coll Cardiol 1992; 20(1):3-16.

  • 123. Nag AC. Study of non-muscle cells of the adult mammalian heart: a fine structural analysis and distribution. Cytobios 1980; 28(109):41-61.

  • 124. Rosenstrauch D Poglajen G Zidar N Gregoric ID. Stem cell therapy for ischemic heart failure. Tex Heart Inst J 2005; 32(3):339-47.

  • 125. Pfeffer MA Braunwald E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation 1990; 81(4):1161-72.

  • 126. Garry DJ Martin CM. Cardiac regeneration: self-service at the pump. Circ Res 2004; 95(9):852-4.

  • 127. Marchetti S Gimond C Iljin K Bourcier C Alitalo K Pouysségur J Pagès G. Endothelial cells genetically selected from differentiating mouse embryonic stem cells incorporate at sites of neovascularization in vivo. J Cell Sci 2002; 115(Pt 10):2075-85.

  • 128. Vittet D Prandini MH Berthier R Schweitzer A Martin-Sisteron H Uzan G Dejana E. Embryonic stem cells differentiate in vitro to endothelial cells through successive maturation steps. Blood 1996; 1;88(9):3424-31.

  • 129. Kehat I Kenyagin-Karsenti D Snir M Segev H Amit M Gepstein A et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 2001; 108(3):407-14.

  • 130. Menasché P Hagège AA Scorsin M Pouzet B Desnos M Duboc D et al. Myoblast transplantation for heart failure. Lancet 2001; 357(9252):279-80.

  • 131. Menasché P. Skeletal myoblasts for cardiac repair: Act II? J Am Coll Cardiol 2008; 52(23):1881-3 DOI 10.1016/j.jacc.2008.07.066.

  • 132. Leobon B Garcin I Menasche P Vilquin JT Audinat E Charpak S. Myoblasts transplanted into rat infarcted myocardium are functionally isolated from their host. Proc Natl Acad Sci USA 2003; 100(13):7808-11.

  • 133. Orlic D Kajstura J Chimenti S Limana F Jakoniuk I Quaini F et al. Mobilized bone marrow cells repair the infarcted heart improving function and survival. Proc Natl Acad Sci USA 2001; 98(18):10344-9.

  • 134. Perin EC Dohmann HF Borojevic R Silva SA Sousa AL Mesquita CT et al. Transendocardial autologous bone marrow cell transplantation for severe chronic ischemic heart failure. Circulation 2003; 13;107(18):2294-302.

  • 135. Chen SL Fang WW Ye F Liu YH Qian J Shan SJ et al. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol 2004; 94(1):92-5.

  • 136. Beltrami AP Barlucchi L Torella D Baker M Limana F Chimenti S et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 2003; 114(6):763-76.

  • 137. Messina E De Angelis L Frati G Morrone S Chimenti S Fiordaliso F et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 2004; 95(9):911-21.

  • 138. Bolli R Chugh AR D’Amario D Loughran JH Stoddard MF Ikram S et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 2011; 378(9806):1847-57 DOI 10.1016/S0140-6736(11)61590-0.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 613 306 12
PDF Downloads 242 132 4