Cite

1. Angelos MG, Kaufman DS. Pluripotent stem cell applications for regenerative medicine. Curr Opin Organ Transplant 2015; 20(6):663-70, DOI 10.1097/MOT.0000000000000244.10.1097/MOT.0000000000000244463547026536430Search in Google Scholar

2. Paździorek PR. Mathematical model of stem cell differentiation and tissue regeneration with stochastic noise. Bull Math Biol 2014; 76(7):1642-69, DOI 10.1007/s11538-014-9971-5.10.1007/s11538-014-9971-5413959825033776Search in Google Scholar

3. Jaenisch R, Young R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 2008; 13: 567-582, DOI 10.1016/j.cell.2008.01.015.10.1016/j.cell.2008.01.015414281018295576Search in Google Scholar

4. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981; 292(5819):154-6.10.1038/292154a07242681Search in Google Scholar

5. Kaufman MH, Robertson EJ, Handyside AH, Evans MJ. Establishment of pluripotential cell lines from haploid mouse embryos. J Embryol Exp Morphol 1983; 73:249-61.10.1242/dev.73.1.249Search in Google Scholar

6. Thomson JA, Kalishman J, Golos TG, Durning M, Harris CP, Becker RA, Hearn JP. Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci USA 1995; 92(17):7844-8.10.1073/pnas.92.17.7844412427544005Search in Google Scholar

7. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282(5391):1145-7.10.1126/science.282.5391.11459804556Search in Google Scholar

8. Tabei I, Hashimoto H, Ishiwata I, Tokieda Y, Tachibana T, Akahori M et al. New approach for the establishment of an hepatocyte cell line derived from rat early embryonic stem cells. Hum Cell 2003; 16(1):39-46.10.1111/j.1749-0774.2003.tb00127.x12971624Search in Google Scholar

9. Itskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka O, Amit M et al. Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med 2000; 6(2):88-95.10.1007/BF03401776Search in Google Scholar

10. Pera MF, Tam PP. Extrinsic regulation of pluripotent stem cells. Nature 2010; 465(7299):713-20, DOI 10.1038/nature09228.Search in Google Scholar

11. Darr H, Mayshar Y, Benvenisty N. Overexpression of NANOG in human ES cells enables feeder-free growth while inducing primitive ectoderm features. Development 2006; 133(6):1193-201.10.1242/dev.0228616501172Search in Google Scholar

12. Massagué J, Seoane J, Wotton D. Smad transcription factors. Genes Dev 2005; 19(23):2783-810.10.1101/gad.1350705Search in Google Scholar

13. Lie KH, Tuch BE, Sidhu KS. Suppression of NANOG induces efficient differentiation of human embryonic stem cells to pancreatic endoderm. Pancreas 2012; 41(1):54-64, DOI 10.1097/MPA.0b013e31822362e4.10.1097/MPA.0b013e31822362e4Search in Google Scholar

14. Kee K, Gonsalves JM, Clark AT, Pera RA. Bone morphogenetic proteins induce germ cell differentiation from human embryonic stem cells. Stem Cells Dev 2006; 15(6):831-7.10.1089/scd.2006.15.831Search in Google Scholar

15. Eiselleova L, Matulka K, Kriz V, Kunova M, Schmidtova Z, Neradil J et al. A complex role for FGF-2 in self-renewal, survival, and adhesion of human embryonic stem cells. Stem Cells 2009; 27(8):1847-57.10.1002/stem.128Search in Google Scholar

16. ten Berge D, Kurek D, Blauwkamp T, Koole W, Maas A, Eroglu E et al. Embryonic stem cells require Wnt proteins to prevent differentiation to epiblast stem cells. Nat Cell Biol 2011; 13(9):1070-5, DOI 10.1038/ncb2314.10.1038/ncb2314Search in Google Scholar

17. Wu CH, Nusse R. Ligand receptor interactions in the Wnt signaling pathway in Drosophila. J Biol Chem 2002; 277(44):41762-9.10.1074/jbc.M207850200Search in Google Scholar

18. Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science 1999; 284(5415):770-6.10.1126/science.284.5415.770Search in Google Scholar

19. Kobayashi T, Kageyama R. Hes1 regulates embryonic stem cell differentiation by suppressing Notch signaling. Genes Cells 2010; 15(7):689-98, DOI 10.1111/j.1365-2443.2010.01413.x.10.1111/j.1365-2443.2010.01413.xSearch in Google Scholar

20. Schuldiner M, Yanuka O, Itskovitz-Eldor J, Melton DA, Benvenisty N. Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 2000; 10;97(21):11307-12.10.1073/pnas.97.21.11307Search in Google Scholar

21. Schuldiner M, Eiges R, Eden A, Yanuka O, Itskovitz-Eldor J, Goldstein RS, Benvenisty N. Induced neuronal differentiation of human embryonic stem cells. Brain Res 2001; 913(2):201-5.10.1016/S0006-8993(01)02776-7Search in Google Scholar

22. Chadwick K, Wang L, Li L, Menendez P, Murdoch B, Rouleau A, Bhatia M. Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells. Blood 2003; 102(3):906-15.10.1182/blood-2003-03-0832Search in Google Scholar

23. Prado-Lopez S, Conesa A, Armiñán A, Martínez-Losa M, Escobedo-Lucea C, Gandia C et al. Hypoxia promotes efficient differentiation of human embryonic stem cells to functional endothelium. Stem Cells 2010; 28(3):407-18, DOI 10.1002/stem.295.10.1002/stem.295Search in Google Scholar

24. Kurpisz M. Próby przedkliniczne i kliniczne zastosowania komórek macierzystych do regeneracji mięśnia sercowego. Postępy biol komórki 2010; 37(1):209-223 Polish [Stem cells for heart regeneration – preclinical and clinical trials].Search in Google Scholar

25. Miura Y. Human bone marrow mesenchymal stromal/stem cells: current clinical applications and potential for hematology. Int J Hematol 2015; [Epub ahead of print], DOI 10.1007/s12185-015-1920-z.10.1007/s12185-015-1920-zSearch in Google Scholar

26. Sikora MA, Olszewski WL. Komórki macierzyste – biologia i zastosowanie terapeutyczne. Postępy Hig Med Dosw 2004; 58:202-208 Polish [Stem cells – biology and therapeutic application].Search in Google Scholar

27. Wu Y, Wang J, Scott PG, Tredget EE. Bone marrow-derived stem cells in wound healing: a review. Wound Repair Regen 2007; 15 Suppl 1:S18-26, DOI 10.1111/j.1524-475X.2007.00221.x.10.1111/j.1524-475X.2007.00221.xSearch in Google Scholar

28. Oswald J, Boxberger S, Jørgensen B, Feldmann S, Ehninger G, Bornhäuser M, Werner C. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells 2004; 22(3):377-84.10.1634/stemcells.22-3-377Search in Google Scholar

29. Jones EA, Kinsey SE, English A, Jones RA, Straszynski L, Meredith DM et al. Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells. Arthritis Rheum 2002; 46(12):3349-60.10.1002/art.10696Search in Google Scholar

30. Barry F, Boynton R, Murphy M, Haynesworth S, Zaia J. The SH-3 and SH-4 antibodies recognize distinct epitopes on CD73 from human mesenchymal stem cells. Biochem Biophys Res Commun 2001; 289(2):519-24.10.1006/bbrc.2001.6013Search in Google Scholar

31. Barry FP, Boynton RE, Haynesworth S, Murphy JM, Zaia J. The monoclonal antibody SH-2, raised against human mesenchymal stem cells, recognizes an epitope on endoglin (CD105). Biochem Biophys Res Commun 1999; 265(1):134-9.10.1006/bbrc.1999.1620Search in Google Scholar

32. Bianco P, Robey PG, Simmons PJ. Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2008; 2(4):313-9, DOI 10.1016/j.stem.2008.03.002.10.1016/j.stem.2008.03.002Search in Google Scholar

33. Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 2002; 30(1):42-8.10.1016/S0301-472X(01)00769-XSearch in Google Scholar

34. Wagner W, Roderburg C, Wein F, Diehlmann A, Frankhauser M, Schubert R et al. Molecular and secretory profiles of human mesenchymal stromal cells and their abilities to maintain primitive hematopoietic progenitors. Stem Cells 2007; 25(10):2638-47.10.1634/stemcells.2007-028017615262Search in Google Scholar

35. Hao QL, Smogorzewska EM, Barsky LW, Crooks GM. In vitro identification of single CD34+CD38− cells with both lymphoid and myeloid potential. Blood 1998; 91(11):4145-51.10.1182/blood.V91.11.4145Search in Google Scholar

36. Craig W, Kay R, Cutler RL, Lansdorp PM. Expression of Thy-1 on human hematopoietic progenitor cells. J Exp Med 1993; 177(5):1331-42.10.1084/jem.177.5.133121910257683034Search in Google Scholar

37. Kirby GT, Mills SJ, Cowin AJ, Smith LE. Stem cells for cutaneous wound healing. Biomed Res Int 2015; 2015:285869, DOI 10.1155/2015/285869.10.1155/2015/285869446827626137471Search in Google Scholar

38. Baksh D, Yao R, Tuan RS. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 2007; 25(6):1384-92.10.1634/stemcells.2006-070917332507Search in Google Scholar

39. Gluckman E, Broxmeyer HA, Auerbach AD, Friedman HS, Douglas GW, Devergie A et al. Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med 1989; 321(17):1174-8.10.1056/NEJM1989102632117072571931Search in Google Scholar

40. Roszek K, Komoszyński M. Kontrola i kierunki różnicowania komórek macierzystych krwi pępowinowej oraz ich zastosowanie terapeutyczne. Postępy Hig Med Dosw 2008; 62:660-667 Polish [Regulation and direction of umbilical cord blood stem cells differentiation and their therapeutic application].Search in Google Scholar

41. Fujino H, Hiramatsu H, Tsuchiya A, Niwa A, Noma H, Shiota M et al. Human cord blood CD34+ cells develop into hepatocytes in the livers of NOD/SCID/gamma(c)null mice through cell fusion. FASEB J 2007; 21(13):3499-510.10.1096/fj.06-6109com17576850Search in Google Scholar

42. Esposito M, Lucariello A, Costanzo C, Fiumarella A, Giannini A, Riccardi G, Riccio I. Differentiation of human umbilical cord-derived mesenchymal stem cells, WJ-MSCs, into chondrogenic cells in the presence of pulsed electromagnetic fields. In Vivo 2013; 27(4):495-500.Search in Google Scholar

43. Ciavarella S, Dammacco F, De Matteo M, Loverro G, Silvestris F. Umbilical cord mesenchymal stem cells: role of regulatory genes in their differentiation to osteoblasts. Stem Cells Dev 2009; 18(8):1211-20, DOI 10.1089/scd.2008.0340.10.1089/scd.2008.034019125623Search in Google Scholar

44. Gang EJ, Jeong JA, Hong SH, Hwang SH, Kim SW, Yang IH et al. Skeletal myogenic differentiation of mesenchymal stem cells isolated from human umbilical cord blood. Stem Cells 2004; 22(4):617-24.10.1634/stemcells.22-4-61715277707Search in Google Scholar

45. Talaei-Khozani T, Borhani-Haghighi M, Ayatollahi M, Vojdani Z. An in vitro model for hepatocyte-like cell differentiation from Wharton’s jelly derived-mesenchymal stem cells by cell-base aggregates. Gastroenterol Hepatol Bed Bench 2015; 8(3):188-99.Search in Google Scholar

46. Qian Q, Qian H, Zhang X, Zhu W, Yan Y, Ye S et al. 5-Azacytidine induces cardiac differentiation of human umbilical cord-derived mesenchymal stem cells by activating extracellular regulated kinase. Stem Cells Dev 2012; 21(1):67-75, DOI 10.1089/scd.2010.0519.10.1089/scd.2010.0519324567121476855Search in Google Scholar

47. McGuckin C, Forraz N, Baradez MO, Basford C, Dickinson AM, Navran S, Hartgerink JD. Embryonic-like stem cells from umbilical cord blood and potential for neural modeling. Acta Neurobiol Exp (Wars) 2006; 66(4):321-9.Search in Google Scholar

48. Fazzina R, Mariotti A, Procoli A, Fioravanti D, Iudicone P, Scambia G et al. A new standardized clinical-grade protocol for banking human umbilical cord tissue cells. Transfusion 2015; 55(12):2864-2873, DOI 10.1111/trf.13277.10.1111/trf.13277Search in Google Scholar

49. Gang EJ, Hong SH, Jeong JA, Hwang SH, Kim SW, Yang IH et al. In vitro mesengenic potential of human umbilical cord blood-derived mesenchymal stem cells. Biochem Biophys Res Commun 2004; 321(1):102-8.10.1016/j.bbrc.2004.06.111Search in Google Scholar

50. Hofmeister CC, Zhang J, Knight KL, Le P, Stiff PJ. Ex vivo expansion of umbilical cord blood stem cells for transplantation: growing knowledge from the hematopoietic niche. Bone Marrow Transplant 2007; 39(1):11-23.10.1038/sj.bmt.1705538Search in Google Scholar

51. Körbling M, Freireich EJ. Twenty-five years of peripheral blood stem cell transplantation. Blood 2011; 117(24):6411-6, DOI 10.1182/blood-2010-12-322214.10.1182/blood-2010-12-322214Search in Google Scholar

52. Kasai M, Kiyama Y, Kawamura A. Application of peripheral blood stem cells (PBSC) mobilized by recombinant human granulocyte colony stimulating factor for allogeneic PBSC transplantation and the comparison of allogeneic PBSC transplantation and bone marrow transplantation. Transfus Apher Sci 2002; 26(2):121-7.10.1016/S1473-0502(01)00160-4Search in Google Scholar

53. Blau IW, Basara N, Lentini G, Guenzelmann S, Kirsten D, Schmetzer B et al. Feasibility and safety of peripheral blood stem cell transplantation from unrelated donors: results of a single-center study. Bone Marrow Transplant 2001; 27(1):27-33.10.1038/sj.bmt.1702734709159211244435Search in Google Scholar

54. Hölig K. G-CSF in Healthy Allogeneic Stem Cell Donors. Transfus Med Hemother 2013; 40(4):225-35, DOI 10.1159/000354196.10.1159/000354196377639124179471Search in Google Scholar

55. Francis MP, Sachs PC, Elmore LW, Holt SE. Isolating adipose-derived mesenchymal stem cells from lipoaspirate blood and saline fraction. Organogenesis 2010; 6(1):11-4.10.4161/org.6.1.10019286173820592860Search in Google Scholar

56. Schäffler A, Büchler C. Concise review: adipose tissue-derived stromal cells--basic and clinical implications for novel cell-based therapies. Stem Cells 2007; 25(4):818-27.10.1634/stemcells.2006-058917420225Search in Google Scholar

57. Kim EH, Heo CY. Current applications of adipose-derived stem cells and their future perspectives. World J Stem Cells 2014; 6(1):65-8, DOI 10.4252/wjsc.v6.i1.65.10.4252/wjsc.v6.i1.65392701524567789Search in Google Scholar

58. Priya N, Sarcar S, Majumdar AS, SundarRaj S. Explant culture: a simple, reproducible, efficient and economic technique for isolation of mesenchymal stromal cells from human adipose tissue and lipoaspirate. J Tissue Eng Regen Med 2014; 8(9):706-16, DOI 10.1002/term.1569.10.1002/term.1569Search in Google Scholar

59. Tobita M, Orbay H, Mizuno H. Adipose-derived stem cells: current findings and future perspectives. Discov Med 2011; 11(57):160-70.Search in Google Scholar

60. Pikuła M, Marek-Trzonkowska N, Wardowska A, Renkielska A, Trzonkowski P. Adipose tissue-derived stem cells in clinical applications. Expert Opin Biol Ther 2013; 13(10):1357-70, DOI 10.1517/14712598.2013.823153.10.1517/14712598.2013.823153Search in Google Scholar

61. Yu JM, Bunnell BA, Kang SK. Neural differentiation of human adipose tissue-derived stem cells. Methods Mol Biol 2011; 702:219-31, DOI 10.1007/978-1-61737-960-4_16.10.1007/978-1-61737-960-4_16Search in Google Scholar

62. Cao Y, Sun Z, Liao L, Meng Y, Han Q, Zhao RC. Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochem Biophys Res Commun 2005; 332(2):370-9.10.1016/j.bbrc.2005.04.135Search in Google Scholar

63. Salem SA, Hwie AN, Saim A, Chee Kong CH, Sagap I, Singh R et al. Human adipose tissue derived stem cells as a source of smooth muscle cells in the regeneration of muscular layer of urinary bladder wall. Malays J Med Sci 2013; 20(4):80-7.Search in Google Scholar

64. Montarras D, Morgan J, Collins C, Relaix F, Zaffran S, Cumano A et al. Direct isolation of satellite cells for skeletal muscle regeneration. Science 2005; 309(5743):2064-7.10.1126/science.1114758Search in Google Scholar

65. Archacka K, Kowalski K, Brzóska E. Czy komórki satelitowe są macierzyste? Postępy biochemii 2013; 59(2):205-218 Polish [Are satellite cells stem cells?].Search in Google Scholar

66. Morgan JE, Partridge TA. Muscle satellite cells. Int J Biochem Cell Biol 2003; 35(8):1151-6.10.1016/S1357-2725(03)00042-6Search in Google Scholar

67. Williams JT, Southerland SS, Souza J, Calcutt AF, Cartledge RG. Cells isolated from adult human skeletal muscle capable of differentiating into multiple mesodermal phenotypes. Am Surg 1999; 65(1):22-6.Search in Google Scholar

68. Briggs R, King TJ. Transplantation of Living Nuclei From Blastula Cells into Enucleated Frogs’ Eggs. Proc Natl Acad Sci USA 1952; 38(5):455-63.10.1073/pnas.38.5.455106358616589125Search in Google Scholar

69. Gurdon JB. The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morphol 1962; 10:622-40.10.1242/dev.10.4.622Search in Google Scholar

70. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126(4):663-76.10.1016/j.cell.2006.07.02416904174Search in Google Scholar

71. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131(5):861-72.10.1016/j.cell.2007.11.01918035408Search in Google Scholar

72. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318(5858):1917-20.10.1126/science.115152618029452Search in Google Scholar

73. Aasen T, Raya A, Barrero MJ, Garreta E, Consiglio A, Gonzalez F et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 2008; 26(11):1276-84.10.1038/nbt.150318931654Search in Google Scholar

74. Seki T, Yuasa S, Oda M, Egashira T, Yae K, Kusumoto D et al. Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells. Cell Stem Cell 2010; 7(1):11-4, DOI 10.1016/j.stem.2010.06.003.10.1016/j.stem.2010.06.00320621043Search in Google Scholar

75. Aoi T, Yae K, Nakagawa M, Ichisaka T, Okita K, Takahashi K et al. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 2008; 321(5889):699-702.10.1126/science.115488418276851Search in Google Scholar

76. Cox JL, Rizzino A. Induced pluripotent stem cells: what lies beyond the paradigm shift. Exp Biol Med (Maywood) 2010; 235(2):148-58, DOI 10.1258/ebm.2009.009267.10.1258/ebm.2009.009267285835920404029Search in Google Scholar

77. Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 2000; 343(4):230-8.10.1056/NEJM20000727343040110911004Search in Google Scholar

78. Ryan EA, Lakey JR, Paty BW, Imes S, Korbutt GS, Kneteman NM et al. Successful islet transplantation: continued insulin reserve provides long-term glycemic control. Diabetes 2002; 51(7):2148-57.10.2337/diabetes.51.7.214812086945Search in Google Scholar

79. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993; 329(14):977-86.10.1056/NEJM1993093032914018366922Search in Google Scholar

80. Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 2001; 292(5520):1389-94.10.1126/science.105886611326082Search in Google Scholar

81. Assady S, Maor G, Amit M, Itskovitz-Eldor J, Skorecki KL, Tzukerman M. Insulin production by human embryonic stem cells. Diabetes 2001; 50(8):1691-7.10.2337/diabetes.50.8.169111473026Search in Google Scholar

82. Fujikawa T, Oh SH, Pi L, Hatch HM, Shupe T, Petersen BE. Teratoma formation leads to failure of treatment for type I diabetes using embryonic stem cell-derived insulin-producing cells. Am J Pathol 2005; 166(6):1781-91.10.1016/S0002-9440(10)62488-1Search in Google Scholar

83. Tateishi K, He J, Taranova O, Liang G, D’Alessio AC, Zhang Y. Generation of insulin-secreting islet-like clusters from human skin fibroblasts. J Biol Chem 2008; 283(46):31601-7, DOI 10.1074/jbc.M806597200.10.1074/jbc.M806597200Search in Google Scholar

84. Shim JH, Kim J, Han J, An SY, Jang YJ, Son J et al. Pancreatic islet-like three-dimensional aggregates derived from human embryonic stem cells ameliorate hyperglycemia in streptozotocin-induced diabetic mice. Cell Transplant 2015; 24(10):2155-68, DOI 10.3727/096368914X685438.10.3727/096368914X685438Search in Google Scholar

85. Ahrén B, Holst JJ. The cephalic insulin response to meal ingestion in humans is dependent on both cholinergic and noncholinergic mechanisms and is important for postprandial glycemia. Diabetes 2001; 50(5):1030-8.10.2337/diabetes.50.5.1030Search in Google Scholar

86. Ogawa N, List JF, Habener JF, Maki T. Cure of overt diabetes in NOD mice by transient treatment with anti-lymphocyte serum and exendin-4. Diabetes 2004; 53(7):1700-5.10.2337/diabetes.53.7.1700Search in Google Scholar

87. Nicholls JG, Adams WB, Eugenin J, Geiser R, Lepre M, Luque JM, Wintzer M. Why does the central nervous system not regenerate after injury? Surv Ophthalmol 1999; 43 Suppl 1:S136-41.10.1016/S0039-6257(99)00008-9Search in Google Scholar

88. Ingram V. Alzheimer’s Disease. American Scientists 2003; 91(4):312-21.10.1511/2003.26.866Search in Google Scholar

89. Macphee GJA, Stewart DA. Parkinson’s disease. Reviews in Clinical Gerontology 2001; 11(1):33-49.10.1017/S0959259801011145Search in Google Scholar

90. Okano H, Sawamoto K. Neural stem cells: involvement in adult neurogenesis and CNS repair. Philos Trans R Soc Lond B Biol Sci 2008; 363(1500):2111-22.10.1098/rstb.2008.2264261018318339601Search in Google Scholar

91. Blurton-Jones M, Kitazawa M, Martinez-Coria H, Castello NA, Müller FJ, Loring JF et al. Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc Natl Acad Sci USA 2009; 106(32):13594-9, DOI 10.1073/pnas.0901402106.10.1073/pnas.0901402106271532519633196Search in Google Scholar

92. Zhang Q, Wu HH, Wang Y, Gu GJ, Zhang W, Xia R. Neural stem cell transplantation decreases neuroinflammation in a transgenic mouse model of Alzheimer’s disease. J Neurochem 2015; [Epub ahead of print], DOI 10.1111/jnc.13413.10.1111/jnc.13413Search in Google Scholar

93. Ager RR, Davis JL, Agazaryan A, Benavente F, Poon WW, LaFerla FM, Blurton-Jones M. Human neural stem cells improve cognition and promote synaptic growth in two complementary transgenic models of Alzheimer’s disease and neuronal loss. Hippocampus 2015; 25(7):813-26, DOI 10.1002/hipo.22405.10.1002/hipo.22405Search in Google Scholar

94. Park HJ, Lee PH, Bang OY, Lee G, Ahn YH. Mesenchymal stem cells therapy exerts neuroprotection in a progressive animal model of Parkinson’s disease. J Neurochem 2008; 107(1):141-51, DOI 10.1111/j.1471-4159.2008.05589.x.10.1111/j.1471-4159.2008.05589.xSearch in Google Scholar

95. Grealish S, Diguet E, Kirkeby A, Mattsson B, Heuer A, Bramoulle Y et al. Human ESC-derived dopamine neurons show similar preclinical efficacy and potency to fetal neurons when grafted in a rat model of Parkinson’s disease. Cell Stem Cell 2014; 15(5):653-65, DOI 10.1016/j.stem.2014.09.017.10.1016/j.stem.2014.09.017Search in Google Scholar

96. Wernig M, Zhao JP, Pruszak J, Hedlund E, Fu D, Soldner F et al. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Natl Acad Sci USA 2008; 105(15):5856-61, DOI 10.1073/pnas.0801677105.10.1073/pnas.0801677105Search in Google Scholar

97. Bai L, Lennon DP, Caplan AI, DeChant A, Hecker J, Kranso J et al. Hepatocyte growth factor mediates mesenchymal stem cell–induced recovery in multiple sclerosis models. Nat Neurosci 2012; 15(6):862-70, DOI 10.1038/nn.3109.10.1038/nn.3109Search in Google Scholar

98. Burt RK, Loh Y, Cohen B, Stefoski D, Balabanov R, Katsamakis G et al. Autologous non-myeloablative haemopoietic stem cell transplantation in relapsing-remitting multiple sclerosis: a phase I/II study. Lancet Neurol 2009; 8(3):244-53, DOI 10.1016/S1474-4422(09)70017-1.10.1016/S1474-4422(09)70017-1Search in Google Scholar

99. Burt RK, Balabanov R, Han X, Sharrack B, Morgan A, Quigley K et al. Association of nonmyeloablative hematopoietic stem cell transplantation with neurological disability in patients with relapsing-remitting multiple sclerosis. JAMA 2015; 313(3):275-84, DOI 10.1001/jama.2014.17986.10.1001/jama.2014.17986Search in Google Scholar

100. Connick P, Kolappan M, Crawley C, Webber DJ, Patani R, Michell AW et al. Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. Lancet Neurol 2012; 11(2):150-6, DOI 10.1016/S1474-4422(11)70305-2.10.1016/S1474-4422(11)70305-2Search in Google Scholar

101. Cabanes C, Bonilla S, Tabares L, Martínez S. Neuroprotective effect of adult hematopoietic stem cells in a mouse model of motoneuron degeneration. Neurobiol Dis 2007; 26(2):408-18.10.1016/j.nbd.2007.01.00817337196Search in Google Scholar

102. Vercelli A, Mereuta OM, Garbossa D, Muraca G, Mareschi K, Rustichelli D et al. Human mesenchymal stem cell transplantation extends survival, improves motor performance and decreases neuroinflammation in mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 2008; 31(3):395-405, DOI 10.1016/j.nbd.2008.05.016.10.1016/j.nbd.2008.05.01618586098Search in Google Scholar

103. Mazzini L, Mareschi K, Ferrero I, Miglioretti M, Stecco A, Servo S et al. Mesenchymal stromal cell transplantation in amyotrophic lateral sclerosis: a long-term safety study. Cytotherapy 2012; 14(1):56-60, DOI 10.3109/14653249.2011.613929.10.3109/14653249.2011.61392921954839Search in Google Scholar

104. Mazzini L, Gelati M, Profico DC, Sgaravizzi G, Projetti Pensi M, Muzi G et al. Human neural stem cell transplantation in ALS: initial results from a phase I trial. J Transl Med 2015; 13:17, DOI 10.1186/s12967-014-0371-2.10.1186/s12967-014-0371-2Search in Google Scholar

105. Alonso L, Fuchs E. Stem cells of the skin epithelium. Proc Natl Acad Sci USA 2003; 100 Suppl 1:11830-5.10.1073/pnas.173420310030409412913119Search in Google Scholar

106. Blanpain C, Fuchs E. Epidermal stem cells of the skin. Annu Rev Cell Dev Biol 2006; 22:339-73.10.1146/annurev.cellbio.22.010305.104357240591516824012Search in Google Scholar

107. Pikuła M, Trzonkowski P. Biologia komórek macierzystych naskórka oraz ich znaczenie w medycynie. Postepy Hig Med Dosw 2009; 63:449-456 Polish [Biology of epidermal stem cells: Impact on medicine].Search in Google Scholar

108. Barthel R, Aberdam D. Epidermal stem cells. J Eur Acad Dermatol Venereol 2005; 19(4):405-13.10.1111/j.1468-3083.2005.01279.x15987283Search in Google Scholar

109. Pikuła M, Imko-Walczuk B, Nowacka-Pikuła D, Okuniewska A, Langa P, Jaśkiewicz J, Trzonkowski P. Możliwości hodowli keratynocytów oraz komórek macierzystych naskórka i ich zastosowania w leczeniu trudno gojących się ran. Przegl Dermatol 2012; 99:222–229 Polish [The culture of keratinocytes and epidermal stem cells and their possible application in the treatment of chronic wounds].Search in Google Scholar

110. Liu L, Yu Y, Hou Y, Chai J, Duan H, Chu W et al. Human umbilical cord mesenchymal stem cells transplantation promotes cutaneous wound healing of severe burned rats. PLoS One 2014; 9(2):e88348, DOI 10.1371/journal.pone.0088348.10.1371/journal.pone.0088348393052224586314Search in Google Scholar

111. Mirzaei H, Sahebkar A, Avan A, Jaafari MR, Salehi R, Salehi H et al. Application of mesenchymal stem cells in melanoma: a potential therapeutic strategy for delivery of targeted agents. Curr Med Chem 2015; [Epub ahead of print], DOI 10.2174/0929867323666151217122033.10.2174/092986732366615121712203326674785Search in Google Scholar

112. Fukuoka H, Suga H. Hair Regeneration Treatment Using Adipose-Derived Stem Cell Conditioned Medium: Follow-up With Trichograms. Eplasty 2015; 15:e10.Search in Google Scholar

113. Ibrahim ZA, Eltatawy RA, Ghaly NR, Abd El-Naby NM, Abou El Fetouh HM, Abd Elateef AE et al. Autologus bone marrow stem cells in atrophic acne scars: A pilot study. J Dermatolog Treat 2015; 26(3):260-5, DOI 10.3109/09546634.2014.946379.10.3109/09546634.2014.94637925041112Search in Google Scholar

114. Shabbir A, Cox A, Rodriguez-Menocal L, Salgado M, Van Badiavas E. Mesenchymal stem cell exosomes induce proliferation and migration of normal and chronic wound fibroblasts, and enhance angiogenesis in vitro. Stem Cells Dev 2015; 24(14):1635-47, DOI 10.1089/scd.2014.0316.10.1089/scd.2014.0316449979025867197Search in Google Scholar

115. Falanga V, Iwamoto S, Chartier M, Yufit T, Butmarc J, Kouttab N et al. Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Eng 2007; 13(6):1299-312.10.1089/ten.2006.027817518741Search in Google Scholar

116. Yoshikawa T, Mitsuno H, Nonaka I, Sen Y, Kawanishi K, Inada Y et al. Wound therapy by marrow mesenchymal cell transplantation. Plast Reconstr Surg 2008; 121(3):860-77, DOI 10.1097/01.prs.0000299922.96006.24.10.1097/01.prs.0000299922.96006.24Search in Google Scholar

117. Caplice NM, Gersh BJ. Stem cells to repair the heart: a clinical perspective. Circ Res 2003; 10;92(1):6-8.10.1161/01.RES.0000052826.35667.40Search in Google Scholar

118. Fujita Y, Inokuma D, Abe R, Sasaki M, Nakamura H, Shimizu T, Shimizu H. Conversion from human haematopoietic stem cells to keratinocytes requires keratinocyte secretory factors. Clin Exp Dermatol 2012; 37(6):658-64, DOI 10.1111/j.1365-2230.2011.04312.x.10.1111/j.1365-2230.2011.04312.xSearch in Google Scholar

119. Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM et al; American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics - 2011 update: a report from the American Heart Association. Circulation 2011; 123(4):e18-e209, DOI 10.1161/CIR.0b013e3182009701.Search in Google Scholar

120. Walsh RA. Molecular and cellular biology of the normal, hypertrophied, and failing heart. w: O’Rouke RA, ed. The Heart, Arteries and Veins. 10th ed. New York: McGraw-Hill 2001; 115–118.Search in Google Scholar

121. Jugdutt BI. Ventricular remodeling after infarction and the extracellular collagen matrix: when is enough enough? Circulation 2003; 108(11):1395-403.Search in Google Scholar

122. Weber KT, Anversa P, Armstrong PW, Brilla CG, Burnett JC Jr, Cruickshank JM et al. Remodeling and reparation of the cardiovascular system. J Am Coll Cardiol 1992; 20(1):3-16.10.1016/0735-1097(92)90130-FSearch in Google Scholar

123. Nag AC. Study of non-muscle cells of the adult mammalian heart: a fine structural analysis and distribution. Cytobios 1980; 28(109):41-61.Search in Google Scholar

124. Rosenstrauch D, Poglajen G, Zidar N, Gregoric ID. Stem cell therapy for ischemic heart failure. Tex Heart Inst J 2005; 32(3):339-47.Search in Google Scholar

125. Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation 1990; 81(4):1161-72.10.1161/01.CIR.81.4.1161Search in Google Scholar

126. Garry DJ, Martin CM. Cardiac regeneration: self-service at the pump. Circ Res 2004; 95(9):852-4.10.1161/01.RES.0000147619.96113.51Search in Google Scholar

127. Marchetti S, Gimond C, Iljin K, Bourcier C, Alitalo K, Pouysségur J, Pagès G. Endothelial cells genetically selected from differentiating mouse embryonic stem cells incorporate at sites of neovascularization in vivo. J Cell Sci 2002; 115(Pt 10):2075-85.10.1242/jcs.115.10.2075Search in Google Scholar

128. Vittet D, Prandini MH, Berthier R, Schweitzer A, Martin-Sisteron H, Uzan G, Dejana E. Embryonic stem cells differentiate in vitro to endothelial cells through successive maturation steps. Blood 1996; 1;88(9):3424-31.10.1182/blood.V88.9.3424.bloodjournal8893424Search in Google Scholar

129. Kehat I, Kenyagin-Karsenti D, Snir M, Segev H, Amit M, Gepstein A et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 2001; 108(3):407-14.10.1172/JCI200112131Search in Google Scholar

130. Menasché P, Hagège AA, Scorsin M, Pouzet B, Desnos M, Duboc D et al. Myoblast transplantation for heart failure. Lancet 2001; 357(9252):279-80.10.1016/S0140-6736(00)03617-5Search in Google Scholar

131. Menasché P. Skeletal myoblasts for cardiac repair: Act II? J Am Coll Cardiol 2008; 52(23):1881-3, DOI 10.1016/j.jacc.2008.07.066.10.1016/j.jacc.2008.07.066Search in Google Scholar

132. Leobon B, Garcin I, Menasche P, Vilquin JT, Audinat E, Charpak S. Myoblasts transplanted into rat infarcted myocardium are functionally isolated from their host. Proc Natl Acad Sci USA 2003; 100(13):7808-11.10.1073/pnas.1232447100Search in Google Scholar

133. Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci USA 2001; 98(18):10344-9.10.1073/pnas.181177898Search in Google Scholar

134. Perin EC, Dohmann HF, Borojevic R, Silva SA, Sousa AL, Mesquita CT et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 2003; 13;107(18):2294-302.10.1161/01.CIR.0000070596.30552.8BSearch in Google Scholar

135. Chen SL, Fang WW, Ye F, Liu YH, Qian J, Shan SJ et al. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol 2004; 94(1):92-5.10.1016/j.amjcard.2004.03.034Search in Google Scholar

136. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 2003; 114(6):763-76.10.1016/S0092-8674(03)00687-1Search in Google Scholar

137. Messina E, De Angelis L, Frati G, Morrone S, Chimenti S, Fiordaliso F et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 2004; 95(9):911-21.10.1161/01.RES.0000147315.71699.5115472116Search in Google Scholar

138. Bolli R, Chugh AR, D’Amario D, Loughran JH, Stoddard MF, Ikram S et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 2011; 378(9806):1847-57, DOI 10.1016/S0140-6736(11)61590-0.Search in Google Scholar