Otwarty dostęp

Kinetic and Isotherm Analysis of Cu(II) Adsorption onto Almond Shell (Prunus Dulcis)


Zacytuj

[1] Zhou B, Wang Z, Shen D, Shen F, Wu C, Xiao R. Low cost earthworm manure-derived carbon material for the adsorption of Cu2+ from aqueous solution: Impact of pyrolysis temperature. Ecol Eng. 2017;98:189-195. DOI: 10.1016/j.ecoleng.2016.10.061.10.1016/j.ecoleng.2016.10.061Search in Google Scholar

[2] Suguna M, Reddy AS, Kumar NS, Krishnaiah A. Biosorption of manganese(II) ions from aqueous solution by glutaraldehyde cross-linked chitosan beads: Equilibrium and kinetic studies. Adsorp Sci Technol. 2010;28:213-219. DOI: 10.1260/0263-6174.28.3.213.10.1260/0263-6174.28.3.213Search in Google Scholar

[3] Feng NC, Guo XY, Liang S. Adsorption study of copper(II) by chemically modified orange peel. J Hazard Mater. 2009;164:1286-1292. DOI: 10.1016/j.jhazmat.2008.09.096.10.1016/j.jhazmat.2008.09.096Search in Google Scholar

[4] Anırudhan TS, Rajı C, Shubha KP. Immobilization of heavy metals from aqueous solutions using polyacrylamide grafted hydrous tin(IV) oxide gel having carboxylate functional groups. Water Res. 2001;35:300-310. DOI: 10.1016/S0043-1354(00)00234-7.10.1016/S0043-1354(00)00234-7Search in Google Scholar

[5] Kocadagıstan E, Bascı N, Kocadagıstan B. Biosorption of copper(II) from aqueous solutions by wheat shell. Desalination. 2004;164:135-140. DOI: 10.1016/S0011-9164(04)00172-9.10.1016/S0011-9164(04)00172-9Search in Google Scholar

[6] Hashemian S, Mirshamsi M. Kinetic and thermodynamic of adsorption of 2-picoline by sawdust from aqueous solution. J Industrial Eng Chem. 2012;18(6):2010-2015. DOI: 10.1016/j.jiec.2012.05.020.10.1016/j.jiec.2012.05.020Search in Google Scholar

[7] Yu H, Pang J, Ai T, Liu L. Biosorption of Cu2+, Co2+ and Ni2+ from aqueous solution by modified corn silk: Equilibrium, kinetics, and thermodynamic studies. J Taiwan Inst Chem Eng. 2016;62:21-30. DOI: 10.1016/j.jtice.2016.01.026.10.1016/j.jtice.2016.01.026Search in Google Scholar

[8] Ding Y, Jing D, Gong H, Zhou L, Yang X. Biosorption of aquatic cadmium(II) by unmodified rice straw. Bioresour Technol. 2012;114:20-25. DOI: 10.1016/j.biortech.2012.01.110.10.1016/j.biortech.2012.01.11022445266Search in Google Scholar

[9] Sundaram MN, Sivakumar S. Use of indian almond shell waste and groundnut shell waste for the removal of azure a dye from aqueous solution. J Chem Pharm Res. 2012;4(4):2047-2054. http://www.jocpr.com/articles/use-of-indian-almond-shell-waste-and-groundnut-shell-waste-for-the-removal-of-azure-a-dye-from-aqueoussolution.pdf.Search in Google Scholar

[10] Abdessalem O, Mourad B, Najwa A. Preparation, modification and industrial application of activated carbon from almond shell. J Ind Eng Chem. 2013;19(6):2092-2099. DOI: 10.1016/j.jiec.2013.03.025.10.1016/j.jiec.2013.03.025Search in Google Scholar

[11] Çekim M, Yıldız S, Dere T. Biosorption of copper from synthetic waters by using tobacco leaf: equilibrium, kinetic and thermodynamic tests. J Environ Eng Landscape Manage. 2015;23(03):172-182. DOI: 10.3846/16486897.2015.1050398.10.3846/16486897.2015.1050398Search in Google Scholar

[12] Sahranavard M, Ahmadpour A, Doosti MR. Biosorption of hexavalent chromium ions from aqueous solutions using almond green hull as a low-cost biosorbent. Eur J Sci Res. 2011;58(3):392-400. DOI: 10.1155/2014/67024910.1155/2014/670249Search in Google Scholar

[13] Deniz F. Dye removal by almond shell residues: Studies on biosorption performance and process design.Search in Google Scholar

Materials Sci Eng. 2013;C 33:2821-2826. DOI: 10.1016/j.msec.2013.03.009.10.1016/j.msec.2013.03.009Search in Google Scholar

[14] Ardejani FD, Badii K, Yousefi Limaee N, Shafaei SZ, Mirhabibi AR. Adsorption of Direct Red 80 dye from aqueous solution onto almond shells: Effect of pH, initial concentration and shell type. J Hazard Mater. 2008;151:730-737. DOI: 10.1016/j.jhazmat.2007.06.048.10.1016/j.jhazmat.2007.06.048Search in Google Scholar

[15] Mehrasbi MR, Farahmandkia Z, Taghibeigloo B, Taromi A. Adsorption of lead and cadmium from aqueous solution by using almond shells. Water Air Soil Pollut. 2009;199:343-351. DOI: 10.1007/s11270-008-9883-9.10.1007/s11270-008-9883-9Search in Google Scholar

[16] Duran C, Ozdes D, Gundogdu A, Senturk HB. Kinetics and isotherm analysis of basic dyes adsorption onto almond shell (Prunus dulcis) as a low cost adsorbent. J Chem Eng Data. 2011;56:2136-2147. DOI: 10.1021/je101204j.10.1021/je101204jSearch in Google Scholar

[17] Fathi MR, Asfaram A, Hadipour A, Roosta M. Kinetics and thermodynamic studies for removal of acid blue 129 from aqueous solution by almond shell. J Environ Health Sci Eng. 2014;12:62. DOI: 10.1186/2052-336X-12-62.10.1186/2052-336X-12-62Search in Google Scholar

[18] Hashemian S, Salari K, Yazdi ZA. Preparation of activated carbon from agricultural wastes (almond shell and orange peel) for adsorption of 2-pic from aqueous solution. J Industrial Eng Chem. 2014;20:1892-1900. DOI: 10.1016/j.jiec.2013.09.009.10.1016/j.jiec.2013.09.009Search in Google Scholar

[19] Wang XS, Qin Y. Equilibrium sorption isotherms of Cu2+ on rice bran. Process Biochem. 2005;40:677-680. DOI: 10.1016/j.procbio.2004.01.043.10.1016/j.procbio.2004.01.043Search in Google Scholar

[20] Ajmal M, Khan AH, Ahmad S, Ahmad A. Role of sawdust in the removal of copper(II) from industrial wastes. Water Res. 1998;32:3085-309. DOI: 10.1016/S0043-1354(98)00067-0.10.1016/S0043-1354(98)00067-0Search in Google Scholar

[21] Goyal M, Rattan VK, Aggarwal D, Bansal RC. Removal of copper from aqueous solutions by adsorption on activated carbons. Colloids Surf. 2001;190:229-238. DOI: 10.1016/S0927-7757(01)00656-2.10.1016/S0927-7757(01)00656-2Search in Google Scholar

[22] Srivastava SK, Tyagi R, Pant N. Adsorption of heavy metal ions on carbonaceous material developed from the waste slurry generated in local fertilizer plants. Water Res. 1989;23(9):1161-1165. DOI: 10.1016/0043-1354(89)90160-7.10.1016/0043-1354(89)90160-7Search in Google Scholar

[23] El-Kamash AM, Zaki AA, Abed El Geleel M. Modeling batch kinetics and thermodynamics of zinc and cadmium ions removal from waste solutions using synthetic zeolite A. J Hazard Mater. 2005;127:211-220. DOI: 10.1016/j.jhazmat.2005.07.021.10.1016/j.jhazmat.2005.07.02116125311Search in Google Scholar

[24] Paduraru C, Tofan L, Teodosiu C, Bunia I, Tudorachi N, Toma O. Biosorption of zinc(II) on rapeseed waste: equilibrium studies and thermogravimetric investigations. Process Saf Environ Prot. 2015;94:18-28. DOI: 0.1016/j.psep.2014.12.003.10.1016/j.psep.2014.12.003Search in Google Scholar

[25] Lee S, Kwon O, Yoo K, Alorro RD. Removal of Zn from contaminated sediment by FeCl3 in HCl solution. Metals. 2015;5:1812-1820. DOI: 10.3390/met5041812.10.3390/met5041812Search in Google Scholar

[26] Giwa AA, Abdulsalam KA, Wewers F, Oladipo MA. Biosorption of acid dye in single and multidye systems onto sawdust of locust bean (Parkia biglobosa) tree. J Chem. 2016; Article ID 6436039. DOI: 10.1155/2016/6436039.10.1155/2016/6436039Search in Google Scholar

[27] Aljeboreea AM, Alshirifib AN, Alkaim AF. Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon. Arab J Chem. 2014. DOI: 10.1016/j.arabjc.2014.01.020.10.1016/j.arabjc.2014.01.020Search in Google Scholar

[28] Maheshwari U, Mathesan B, Gupta S. Efficient adsorbent for simultaneous removal of Cu(II), Zn(II) and Cr(VI): Kinetic, thermodynamics and mass transfer mechanism. Process Saf Environ Protect. 2015;98:198-210. DOI: 10.1016/j.psep.2015.07.010.10.1016/j.psep.2015.07.010Search in Google Scholar

[29] Subramani SE, Thinakaran N. Isotherm, kinetic and thermodynamic studies on the adsorption behaviour of textile dyes onto chitosan. Process Saf Environ Protect. 2017;106:1-10. DOI: 10.1016/j.psep.2016.11.024.10.1016/j.psep.2016.11.024Search in Google Scholar

[30] Lagergren S. Zur theorie der sogenannten adsorption geloster stoffe. Kungliga Svenska Vetenskapsakademiens. (On the theory of the so-called adsorption of dissolved substances. Kungliga Svenska Vetenskaps Academy). Handlingar Band. 1898;24(4):1-39.Search in Google Scholar

[31] Zhang J, Cai D, Zhang G, Cai C, Zhang C, Qiu G, et al. Adsorption of methylene blue from aqueous solution onto multiporous palygorskite modified by ion beam bombardment: Effect of contact time, temperature, pH and ionic strength. Appl Clay Sci. 2013;83-84:137-143. DOI: 10.1016/j.clay.2013.08.033.10.1016/j.clay.2013.08.033Search in Google Scholar

[32] Ho YS, McKay G. The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat. Can J Chem Eng. 1998;76(4):822-827. DOI: 10.1002/cjce.5450760419.10.1002/cjce.5450760419Search in Google Scholar

[33] Weber WJ, Morris JC. Kinetics of adsorption on carbon from solutions. Amer Soc Civil Engineers. 1963;89:31-60.Search in Google Scholar

[34] Murugesan A, Ravikumar L, Selva Bala BV, Kumar SP, Vidhyadevi T, Dnesh Kirupha S, et al. Removal of Pb(II) Cu(II) and Cd(II) ions from aqueous solution using polyazomethineamides: equilibrium and kinetic approach. Desalination. 2011;271:199-208. DOI: 10.1016/j.desal.2010.12.029.10.1016/j.desal.2010.12.029Search in Google Scholar

[35] Hameed BH. Equilibrium and kinetic studies of methyl violet sorption by agricultural waste. J Hazard Mater. 2008;154:204-212. DOI: 10.1016/j.jhazmat.2007.10.010.10.1016/j.jhazmat.2007.10.01018023971Search in Google Scholar

[36] Wu FC, Tseng RL, Juang RS. Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye chitosan systems. Chem Eng J. 2009;150:366-373. DOI: 10.1016/j.cej.2009.01.014.10.1016/j.cej.2009.01.014Search in Google Scholar

[37] Bangham DH, Burt FP. The behavior of gases in contact with glass surfaces. Proc Royal Soc London. Ser A: Math Phys Character. 1924;105:481-488. http://www.jstor.org/stable/94228.10.1098/rspa.1924.0032Search in Google Scholar

[38] Fan T, Liu Y, Feng B, Zeng G, Yang C, Zhou M, et al. Biosorption of cadmium(II), zinc(II) and lead(II) by Penicillium simplicissimum: Isotherms, kinetics and thermodynamics. J Hazard Mater. 2008;160:655-661. DOI: 10.1016/j.jhazmat.2008.03.038.10.1016/j.jhazmat.2008.03.03818455299Search in Google Scholar

[39] Nuhoglu Y, Malkoc E. Thermodynamic and kinetic studies for environmentally friendly Ni(II) biosorption using waste pomace of olive oil factory. Bioresour Technol. 2009;100:2375-2380. DOI: 10.1016/j.biortech.2008.11.016.10.1016/j.biortech.2008.11.01619114302Search in Google Scholar

[40] Joo JH, Hassan SHA, Oh SE. Comparative study of biosorption of Zn2 by Pseudomonas aeruginosa and Bacillus cereus. Int Biodeterioration Biodegrad. 2010;64:734-741. DOI: 10.1016/j.ibiod.2010.08.007.10.1016/j.ibiod.2010.08.007Search in Google Scholar

[41] Dotto GL, Pinto LAA. Analysis of mass transfer kinetics in the biosorption of synthetic dyes onto Spirulina platensis nanoparticles. Biochem Eng J. 2012;68:85-90. DOI: 10.1016/j.bej.2012.07.010.10.1016/j.bej.2012.07.010Search in Google Scholar

[42] Cardoso NF, Lima EC, Royer B, Bach MV, Dotto GL, Pinto LAA, Calvete T. Comparison of Spirulina platensis microalgae and commercial activated carbon as adsorbents for the removal of reactive red 120 dye from aqueous effluents. J Hazard Mater. 2012;241-242:146-153. DOI: 10.1016/j.jhazmat.2012.09.026.10.1016/j.jhazmat.2012.09.02623040660Search in Google Scholar

[43] Kavitha D, Namasivayam C. Recycling coir pith, an agricultural solid waste, for the removal of procion orange from wastewater. Dyes Pigm. 2007;74:237-248. DOI: 10.1016/j.dyepig.2006.01.040.10.1016/j.dyepig.2006.01.040Search in Google Scholar

[44] Dursun YA. A comparative study on determination of the equilibrium, kinetic and thermodynamic parameters of biosorption of copper(II) and lead(II) ions onto pretreated Aspergillus niger. Biochem Eng. 2006;28:187-195. DOI: 10.1016/j.bej.2005.11.003.10.1016/j.bej.2005.11.003Search in Google Scholar

[45] Yanping J, Yunying W, Julin C, Yunhai W. Adsorption behavior of Cr(VI), Ni(II), and Co(II) onto zeolite 13x. Desalin Water Treat. 2015;54(2):511-524. DOI: 10.1080/19443994.2014.883333.10.1080/19443994.2014.883333Search in Google Scholar

[46] Brunader S. The Adsorption of Gases and Vapors. Vol. 1. London: Oxford University Press; 1942.Search in Google Scholar

[47] Wang S, Li H. Dye adsorption on unburned carbon: Kinetics and equilibrium. J Hazard Mater. 2005;126:71-77. DOI: 10.1016/j.jhazmat.2005.05.049.10.1016/j.jhazmat.2005.05.049Search in Google Scholar

[48] Langmuir I. The adsorption of gases on mica and platinum. J Am Chem Soc. 1918;40:1361-1403.10.1021/ja02242a004Search in Google Scholar

[49] Freundlich H. Colloid and Capillary Chemistry. London: Metheun; 1926.Search in Google Scholar

[50] Thomas JM, Thomas WJ. Introduction to the Principles of Heterrogeneous Catalysis. New York: Academic Press; 1967.Search in Google Scholar

[51] Dubinin MM, Radushkevich LV. Proc Acad Sci Physico Chem. 1947;550:331-340.Search in Google Scholar

[52] Hasany SM, Chaudhary MH. Sorption potential of Hare River sand for the removal of antimony from acidic aqueous solution. Appl Radiation Isotopes. 1996;47:467-471. DOI: 10.1016/0969-8043(95)00310-X.10.1016/0969-8043(95)00310-XSearch in Google Scholar

[53] Onyang MS, Kojima Y, Aoyi O, Bernardo EC, Matsuda H. Adsorption equilibrium modeling and solution chemistry dependence of fluoride removal from water by trivalent-cation-exchanged zeolite F-9. J Colloid Interface Sci. 2004;279:341-350. DOI: 10.1016/j.jcis.2004.06.038.10.1016/j.jcis.2004.06.03815464797Search in Google Scholar

[54] Temkin MJ, Phyzev V. Recent modifications to Langmuir isotherms. Acta Physicochim USSR. 1940;12:217-222.Search in Google Scholar

[55] Aharoni C, Ungarish M. Kinetics of activated chemisorption. Part 2-Theoretical models. J Chem Soc Faraday Trans. 1977;73:456-464. DOI: 10.1039/F19777300456.10.1039/f19777300456Search in Google Scholar

[56] Sekar M, Sakthi V, Rengaraj S. Kinetics and equilibrium adsorption study of lead(II) onto activated carbon prepared from coconut shell. Colloid Interface Sci. 2004;279:307-313. DOI: 10.1016/j.jcis.2004.06.042.10.1016/j.jcis.2004.06.04215464794Search in Google Scholar

[57] Harkıns WD, Jura G. Surfaces of Solids. XIII. A Vapor Adsorption Method for the Determination of the Area of a Solid without the Assumption of a Molecular Area, and the Areas Occupied by Nitrogen and Other Molecules on the Surface of a Solid. J Chem Phys. 1944;66(8):1366-1373. DOI: 10.1021/ja01236a048.10.1021/ja01236a048Search in Google Scholar

[58] Hameed B, Mahmoud D, Ahmad A. Sorption of basic dye from aqueous solution by pomelo (Citrus grandis) peel in a batch system. Colloids Surfaces A: Physicochem Eng Aspects. 2008;316(1):78-84. DOI: 10.1016/j.colsurfa.2007.08.033.10.1016/j.colsurfa.2007.08.033Search in Google Scholar

[59] Aksu Z, Kabasakal E. Batch adsorption of 2,4-dichlorophenoxy-acetic acid (2,4-D) from aqueous solution by granular activated carbon. Sep Purif Technol. 2004;35:223-240. DOI: 10.1016/S1383-5866(03)00144-8.10.1016/S1383-5866(03)00144-8Search in Google Scholar

[60] Shah J, Jan MR, Haq A, Zeeshan M. Equilibrium, kinetic and thermodynamic studies for sorption of Ni(II) from aqueous solution using formaldehyde treated waste tea leaves. J Saudi Chem Soc. 2015;19(3):301-310. DOI: 10.1016/j.jscs.2012.04.004.10.1016/j.jscs.2012.04.004Search in Google Scholar

[61] Kulkarni RM, Shetty KV, Srinikethan G. Cadmium(II) and nickel(II) biosorption by Bacillus laterosporus (MTCC 1628). J Taiwan Inst Chem Engineers. 2014;45(4):1628-1635. DOI: 10.1016/j.jtice.2013.11.006.10.1016/j.jtice.2013.11.006Search in Google Scholar

[62] Ahmad MF, Hayda S, Quraishi TA. Enhancement of biosorption of zinc ions from aqueous solution by immobilized Candida utilis and Candida tropicalis cells. Int Biodeterioration Biodegrad. 2013;83:119-128. DOI: 10.1016/j.ibiod.2013.04.016.10.1016/j.ibiod.2013.04.016Search in Google Scholar

[63] Argun ME, Dursun S, Ozdemir C, Karatas M. Heavy metal adsorption by modified oak sawdust: thermodynamics and kinetics. J Hazard Mater. 2007;141:77-85. DOI: 10.1016/j.jhazmat.2006.06.095.10.1016/j.jhazmat.2006.06.09516879919Search in Google Scholar

[64] Shukla SR, Pai RS. Adsorption of Cu(II), Ni(II) and Zn(II) on dye loaded ground- nut shells and sawdust. Sep Purif Technol. 2005;43:1-8. DOI: 10.1016/j.seppur.2004.09.003.10.1016/j.seppur.2004.09.003Search in Google Scholar

[65] Putra WP, Kamari A, Yusoff SNM, Ishak CF, Mohamed A, Hashim N, et al. Biosorption of Cu(II), Pb(II) and Zn(II) ions from aqueous solutions using selected waste materials: Adsorption and characterisation studies. J Encapsulation Adsorption Sci. 2014;4:25-35. DOI: 10.4236/jeas.2014.41004.10.4236/jeas.2014.41004Search in Google Scholar

[66] Hossain MA, Ngo HH, Guo WS, Setiati T. Adsorption and desorption of copper(II) ions onto garden grass. Bioresour Technol. 2012;121:386-395. DOI: 10.1016/j.biortech.2012.06.119.10.1016/j.biortech.2012.06.11922864175Search in Google Scholar

[67] Osman HE, Badwy RK, Ahmad HF. Usage of some agricultural by-products in the removal of some heavy metals from industrial wastewater. J Phytol. 2010;2:51-62. http://scienceflora.org/journals/index.php/jp/article/viewFile/2100/2079.Search in Google Scholar

[68] Qian Q, Mochidzuki K, Fujii T, Sakoda A. Removal of copper from aqueous solution using iron containing adsorbents derived from methane fermentation sludge. J Hazard Mater. 2009;172:1137-1144. DOI: 10.1016/j.jhazmat.2009.07.107.10.1016/j.jhazmat.2009.07.10719726131Search in Google Scholar

[69] Acheampong MA, Pakshirajan K, Annachhatre AP, Lens PNL. Removal of Cu(II) by biosorption onto coconut shell in fixed-bed column systems. J Ind Eng Chem. 2013;19:841-848. DOI: 10.1016/j.jiec.2012.10.029.10.1016/j.jiec.2012.10.029Search in Google Scholar

[70] Komy ZR, Abdelraheem WH, Ismail NM. Biosorption of Cu2+ by Eichhornia crassipes: physicochemical characterization, biosorption modeling and mechanism. J King Saud Univ. 2013;25:47-56. DOI: 10.1016/j.jksus.2012.04.00210.1016/j.jksus.2012.04.002Search in Google Scholar

eISSN:
1898-6196
Język:
Angielski