Accès libre

Frequency dependent rectifier memristor bridge used as a programmable synaptic membrane voltage generator

À propos de cet article

Citez

Pershin YV, Sazonov E, Di Ventra M. Analog-to-Digital and Digital-to-Analog Conversion with Memristive Devices. Arxiv preprint. 2011;ArXiv: 1111.2903.PershinYVSazonovEDiVentra MAnalog-to-Digital and Digital-to-Analog Conversion with Memristive DevicesArxiv preprint2011ArXiv: 1111.2903Search in Google Scholar

Wey TA, Jemison WD. An automatic gain control circuit with TiO2 memristor variable gain amplifier. In: NEWCAS Conference (NEWCAS), 2010 8th IEEE International. IEEE; 2010. p. 49–52.WeyTAJemisonWDAn automatic gain control circuit with TiO2 memristor variable gain amplifierIn: NEWCAS Conference (NEWCAS)20108th IEEE International. IEEE2010. p495210.1007/s10470-012-9860-5Search in Google Scholar

Pershin YV, Di Ventra M. Practical approach to programmable analog circuits with memristors. Arxiv preprint. 2009;ArXiv: 0908.3162.PershinYVDiVentra MPractical approach to programmable analog circuits with memristorsArxiv preprint2009ArXiv: 0908.316210.1109/TCSI.2009.2038539Search in Google Scholar

Bahgat A, Salama K. Memristor-based mono-stable oscillator. Arxiv preprint. 2012;ArXiv: 1207.0847.BahgatASalamaKMemristor-based mono-stable oscillatorArxiv preprint2012ArXiv: 1207.0847Search in Google Scholar

Talukdar A, Radwan A, Salama K. A memristor-based third-order oscillator: beyond oscillation. Applied Nanoscience; 2011. p. 1–3. Springer.TalukdarARadwanASalamaKA memristor-based third-order oscillator: beyond oscillation. Applied Nanoscience201113Springer10.1007/s13204-011-0021-4Search in Google Scholar

Merrikh-Bayat F, Shouraki SB. Memristor-based circuits for performing basic arithmetic operations. Procedia Computer Science. 2011;3:128–132. Available fromhttp://dx.doi.org/10.1016/j.procs.2010.12.02210.1016/j.procs.2010.12.022Merrikh-BayatFShourakiSBMemristor-based circuits for performing basic arithmetic operationsProcedia Computer Science20113128132Available fromhttp://dx.doi.org/10.1016/j.procs.2010.12.022Open DOISearch in Google Scholar

Di Ventra M, Pershin YV, Chua LO. Circuit elements with memory: memristors, memcapacitors, and meminductors. Proceedings of the IEEE. 2009;97(10):1717–1724. Available fromhttp://dx.doi.org/10.1109/JPROC.2009.2021077DiVentra MPershinYVChuaLO.Circuit elements with memory: memristors, memcapacitors, and meminductors. Proceedings of the IEEE2009971017171724Available fromhttp://dx.doi.org/10.1109/JPROC.2009.202107710.1109/JPROC.2009.2021077Search in Google Scholar

Drakakis E, Yaliraki S, Barahona M. Memristors and Bernoulli dynamics. In: 12th International Workshop on Cellular Nanoscale Networks and Their Applications (CNNA). IEEE; 2010. p. 1–6.DrakakisEYalirakiSBarahonaMMemristors and Bernoulli dynamicsIn: 12th International Workshop on Cellular Nanoscale Networks and Their Applications (CNNA). IEEE;20101610.1109/CNNA.2010.5430324Search in Google Scholar

Strukov DB, Snider GS, Stewart DR, Williams RS. The missing memristor found. Nature. 2008;453(7191):80–83. Available fromhttp://dx.doi.org/10.1038/nature0693210.1038/nature0693218451858StrukovDBSniderGSStewartDRWilliamsRSThe missing memristor foundNature200845371918083Available fromhttp://dx.doi.org/10.1038/nature0693218451858Open DOISearch in Google Scholar

Pickett MD, Williams RS. Sub-100 fJ and sub-nanosecond thermally driven threshold switching in niobium oxide crosspoint nanodevices. Nanotechnology. 2012;23(21):215202. Available fromhttp://dx.doi.org/10.1088/0957-4484/23/21/21520210.1088/0957-4484/23/21/215202PickettMDWilliamsRSSub-100 fJ and sub-nanosecond thermally driven threshold switching in niobium oxide crosspoint nanodevicesNanotechnology20122321215202Available fromhttp://dx.doi.org/10.1088/0957-4484/23/21/21520222551985Open DOISearch in Google Scholar

Biolek Z, Biolek D, Biolková V. SPICE model of memristor with nonlinear dopant drift. Radioengineering. 2009;18(2):210–214.BiolekZBiolekDBiolková V. SPICE model of memristor with nonlinear dopant drift. Radioengineering2009182210214Search in Google Scholar

Joglekar YN, Wolf SJ. The elusive memristor: properties of basic electrical circuits. European Journal of Physics. 2009;30:661. Available fromhttp://dx.doi.org/10.1088/0143-0807/30/4/00110.1088/0143-0807/30/4/001JoglekarYNWolfSJThe elusive memristor: properties of basic electrical circuitsEuropean Journal of Physics200930661Available fromhttp://dx.doi.org/10.1088/0143-0807/30/4/001Open DOISearch in Google Scholar

Pershin YV, Di Ventra M. Memory effects in complex materials and nanoscale systems. Advances in Physics. 2011;60(2):145–227. Available fromhttp://dx.doi.org/10.1080/00018732.2010.544961PershinYVDi Ventra M. Memory effects in complex materials and nanoscale systems. Advances in Physics2011602145227Available fromhttp://dx.doi.org/10.1080/00018732.2010.54496110.1080/00018732.2010.544961Search in Google Scholar

Chua L. Resistance switching memories are memristors. Applied Physics A: Materials Science & Processing. 2011;102(4):765–783. Available fromhttp://dx.doi.org/10.1007/s00339-011-6264-910.1007/s00339-011-6264-9ChuaLResistance switching memories are memristorsApplied Physics A: Materials Science & Processing20111024765783Available fromhttp://dx.doi.org/10.1007/s00339-011-6264-9Open DOISearch in Google Scholar

Sinha A, Kulkarni MS, Teuscher C. Evolving nanoscale associative memories with memristors. In: 11th IEEE Conference on Nanotechnology (IEEE-NANO). IEEE; 2011. p. 860–864.SinhaAKulkarniMSTeuscherCEvolving nanoscale associative memories with memristors11th IEEE Conference on Nanotechnology (IEEE-NANO)IEEE201186086410.1109/NANO.2011.6144623Search in Google Scholar

Kim H, Sah M, Yang C, Roska T, Chua L. Memristor Bridge Synapses. Proceedings of the IEEE. 2011;(99):1–10.KimHSahMYangCRoskaTChuaLMemristor Bridge SynapsesProceedings of the IEEE20119911010.1109/JPROC.2011.2166749Search in Google Scholar

Cohen GZ, Pershin YV, Di Ventra M. Second and higher harmonics generation with memristive systems. Appl Phys Lett 100. 2012;p. 133109. Available fromhttp://dx.doi.org/10.1063/1.369815310.1063/1.3698153CohenGZPershinYVDiVentra MSecond and higher harmonics generation with memristive systemsAppl Phys Lett1002012133109Available fromhttp://dx.doi.org/10.1063/1.3698153Open DOISearch in Google Scholar

Linares-Barranco B, Serrano-Gotarredona T. Memristance can explain spike-time-dependent-plasticity in neural synapses. Nature Proc. 2009;p. 1–4.Linares-BarrancoBSerrano-GotarredonaTMemristance can explain spike-time-dependent-plasticity in neural synapsesNature Proc20091410.1038/npre.2009.3010.1Search in Google Scholar

Johnsen G, Lütken C, Martinsen ØG, Grimnes S. Memristive model of electro-osmosis in skin. Physical Review E. 2011;83(3):031916. Available fromhttp://dx.doi.org/10.1103/PhysRevE.83.031916JohnsenGLütken C, Martinsen ØG, Grimnes S. Memristive model of electro-osmosis in skin. Physical Review E2011833031916Available fromhttp://dx.doi.org/10.1103/PhysRevE.83.03191610.1103/PhysRevE.83.03191621517534Search in Google Scholar

Chua LO, Kang SM. Memristive devices and systems. Proceedings of the IEEE. 1976;64(2):209–223. Available fromhttp://dx.doi.org/10.1109/PROC.1976.1009210.1109/PROC.1976.10092ChuaLOKangSMMemristive devices and systemsProceedings of the IEEE1976642209223Available fromhttp://dx.doi.org/10.1109/PROC.1976.10092Open DOISearch in Google Scholar

Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of physiology. 1952;117(4):500.1299123710.1113/jphysiol.1952.sp004764HodgkinALHuxleyAFA quantitative description of membrane current and its application to conduction and excitation in nerveThe Journal of physiology19521174500139241312991237Search in Google Scholar

Hebb DO. The organization of behavior, A neuropsychological study. Wiley, New York; 1949.HebbDOThe organization of behavior, A neuropsychological studyWiley, New York;1949Search in Google Scholar

Bear MF, Connors BW, Paradiso MA. Neurowissenschaften. 3rd ed. Spektrum, Akademischer Verlag, Heidelberg; 2009.BearMFConnorsBWParadisoMANeurowissenschaften. 3rd ed. SpektrumAkademischer VerlagHeidelberg200910.1007/978-3-8274-2228-6Search in Google Scholar