À propos de cet article

Citez

1. Altisent, R., Plaza, Lucía, Alegre, I., Vi?As, I., & Abadias, M. (2014). Comparative study of improved vs. traditional apple cultivars and their aptitude to be minimally processed as ‘ready to eat’ apple wedges. LWT - Food Science and Technology, 58(2), 541-549. DOI: 10.1016/j.lwt.2014.03.01910.1016/j.lwt.2014.03.019Open DOISearch in Google Scholar

2. Both, V., Brackmann, A., Thewes, F. R., Weber, A., Schultz, E. E., & Ludwig, V. (2018). The influence of temperature and 1-mcp on quality attributes of ‘galaxy’ apples stored in controlled atmosphere and dynamic controlled atmosphere. Food Packaging and Shelf Life, 16, 168-177. DOI: 10.1016/j.fpsl.2018.03.01010.1016/j.fpsl.2018.03.010Open DOISearch in Google Scholar

3. Burmeister, D. M., & Dilley, D. R. (1995). A ‘scald-like’ controlled atmosphere storage disorder of empire apples — a chilling injury induced by CO2. Postharvest Biology and Technology, 6(1), 1-7. DOI: 10.1016/0925-5214(94)00041-P10.1016/0925-5214(94)00041-Open DOISearch in Google Scholar

4. Colgan, R. J., Dover, C. J., Johnson, D. S., & Pearson, K. (1999). Delayed ca and oxygen at 1 kpa or less control superficial scald without co2 injury on bramley’s seedling apples., 16(3), 223-231. DOI: 10.1016/S0925-5214(99)00029-010.1016/S0925-5214(99)00029-0Open DOISearch in Google Scholar

5. Cortellino, G., Gobbi, S., Bianchi, G., & Rizzolo, A. (2015). Modified atmosphere packaging for shelf life extension of fresh-cut apples. Trends in Food Science & Technology, 46(2), S0924224415001454. DOI: 10.1016/j.tifs.2015.06.00210.1016/j.tifs.2015.06.002Open DOISearch in Google Scholar

6. Cortellino, G., Gobbi, S., & Rizzolo, A. (2016). Monitoring shelf life of fresh-cut apples packed in different atmospheres by electronic nose. Acta horticulturae(1120), 71-78. DOI: 10.17660/ActaHortic.2016.1120.1010.17660/ActaHortic.2016.1120.10Search in Google Scholar

7. Deell, J. R., Lum, G. B., & Ehsani-Moghaddam, B. (2016). Elevated carbon dioxide in storage rooms prior to establishment of controlled atmosphere affects apple fruit quality. Postharvest Biology and Technology, 118, 11-16. DOI: https://doi.org/10.1016/j.postharvbio.2016.03.01310.1016/j.postharvbio.2016.03.013Open DOISearch in Google Scholar

8. Fawbush, F., Nock, J. F., & Watkins, C. B. (2008). External carbon dioxide injury and 1-methylcyclopropene (1-mcp) in the ‘empire’ apple. Postharvest Biology and Technology,48(1), 92-98. DOI: 10.1016/j.postharvbio.2007.09.00510.1016/j.postharvbio.2007.09.005Search in Google Scholar

9. Gapper, N. E., Rudell, D. R., Giovannoni, J. J., & Watkins, C. B. (2013). Biomarker development for external CO2 injury prediction in apples through exploration of both transcriptome and dna methylation changes. AoB Plants, 5, plt021-plt021. DOI: 10.1093/aobpla/plt02110.1093/aobpla/plt021365049423671787Open DOISearch in Google Scholar

10. Gorny, J. R. (1999). Quality changes in fresh-cut peach and nectarine slices as affected by cultivar, storage atmosphere and chemical treatments. J. Food Sci., 64. DOI: 10.1111/j.1365-2621.1999.tb15057.x10.1111/j.1365-2621.1999.tb15057.xSearch in Google Scholar

11. Huque, R., Wills, R. B. H., Pristijono, P., & Golding, J. B. (2013). Effect of nitric oxide (no) and associated control treatments on the metabolism of fresh-cut apple slices in relation to development of surface browning. Postharvest Biology and Technology, 78, 16-23. DOI: 10.1016/j.postharvbio.2012.12.00610.1016/j.postharvbio.2012.12.006Open DOISearch in Google Scholar

12. Liang, L., Jinyu, L. I., Hongyan, M. A., Feifei, W., & Xuewen, L. I. (2016). Effects of storage temperature and maturation on postharvest physiology of xinjiang zaohuang fig fruits. Journal of Nuclear Agricultural Sciences. DOI: 10.11869/j.issn.100-8551.2016.02.0282Search in Google Scholar

13. Lee, C. Y., & Smith, N. L. (1995). Minimal processing of new york apples. New Yorks Food & Life Sciences Bulletin.Search in Google Scholar

14. Mackenzie, S. J., Chandler, C. K., Hasing, T., & Whitaker, V. M. (2011). Role of temperature in the late-season decline in soluble solids content of strawberry fruit in a subtropical production system. Hortscience. DOI: https://doi.org/10.21273/HORTSCI.46.11.156210.21273/HORTSCI.46.11.1562Search in Google Scholar

15. Marta Montero-Calderón, María Alejandra Rojas-Graü, & Olga Martín-Belloso. (2008). Effect of packaging conditions on quality and shelf-life of fresh-cut pineapple (ananas comosus). Postharvest Biology and Technology, 50(2-3), 182-189. DOI: 10.1016/j.postharvbio.2008.03.01410.1016/j.postharvbio.2008.03.014Open DOISearch in Google Scholar

16. (2015). Biopreservative methods to control the growth of foodborne pathogens on fresh-cut lettuce. International Journal of Food Microbiology, 214, 4-11. 10. DOI: 1016/j.ijfoodmicro.2015.07.01510.1016/j.ijfoodmicro.2015.07.015Search in Google Scholar

17. Oms-Oliu, G., and Soliva-Fortuny, R. (2010). Future Trends in Fresh-Cut Fruit and Vegetable Processing. Adv. Fresh-Cut Fruits Veg. Process., 377. DOI: https://doi.org/10.1201/b10263-1610.1201/b10263-16Open DOISearch in Google Scholar

18. Putnik, P., and Bursac Kovacevc, D. (2017). Fresh-cut apples spoilage and predictive microbial growth under modified atmosphere packaging. In R. Rai, & J. B. Aswathanarayan (Eds.), Food safety and protection (p. 728). DOI: https://doi.org/10.1201/9781315153414-210.1201/9781315153414-2Open DOISearch in Google Scholar

19. Paajanen, A., & Vaari, J. (2017). High-temperature decomposition of the cellulose molecule: a stochastic molecular dynamics study. Cellulose, 24(7), 2713-2725.10.1007/s10570-017-1325-7Search in Google Scholar

20. Qian, L., & Giurgiulescu, L. (2014). Property prediction of dry common carp (cyprinus carpio) during storage by kinetic model. Acta Universitatis Cibiniensis. Series E: Food Technology, 18(2), 55-64. DOI: https://doi.org/10.2478/aucft-2014-001410.2478/aucft-2014-0014Open DOISearch in Google Scholar

21. Siddiq, M., Sogi, D. S., & Dolan, K. D. (2013). Antioxidant properties, total phenolics, and quality of fresh-cut ‘tommy atkins’ mangoes as affected by different pre-treatments. LWT- Food Science and Technology, 53(1), 156–162. DOI: 10.1016/j.lwt.2013.01.01710.1016/j.lwt.2013.01.017Open DOISearch in Google Scholar

22. Shaham, Z., Lers, A., & Lurie, S. (2003). Effect of heat or 1-methylcyclopropene on antioxidative enzyme activities and antioxidants in apples in relation to superficial scald development. Journal of the American Society for Horticultural Science American Society for Horticultural Science, 128(5), 564-572. DOI: 10.1152/japplphysiol.00767.200610.1152/japplphysiol.00767.200617038489Open DOISearch in Google Scholar

23. Watkins, C. B., Silsby, K. J., & Goffinet, M. C. (1997). Controlled atmosphere and antioxidant effects on external co2 injury of ‘empire’ apples. Hortscience A Publication of the American Society for Horticultural Science, 32(7), 1242-1246. DOI: 10.21273/HORTSCI.32.7.124210.21273/HORTSCI.32.7.1242Search in Google Scholar

24. Yun-feng, H., Li-ping Z., Jin-jin, W., & Zeng-yu, W. (2019). Shelf-life prediction model of chitosan coated eggs at different storage temperatures. Acta Universitatis Cibiniensis. Series E: Food Technology, 23(1), 55-62. DOI: https://doi.org/10.2478/aucft-2019-000710.2478/aucft-2019-0007Open DOISearch in Google Scholar

eISSN:
2344-150X
Langue:
Anglais
Périodicité:
2 fois par an
Sujets de la revue:
Industrial Chemistry, other, Food Science and Technology