Open Access

Simplified estimation of membrane potentials induced by high-frequency electric signals


Cite

Fear EC and Stuchly MA. Modeling Assemblies of Biological Cells Exposed to Electric Fields, IEEE Trans. Biomed. Eng. 1998;45:1259-71. http://dx.doi.org/10.1109/10.720204FearECStuchlyMAModeling Assemblies of Biological Cells Exposed to Electric Fields, IEEE TransBiomed. Eng199845125971http://dx.doi.org/10.1109/10.72020410.1109/10.720204Search in Google Scholar

Grosse C and Schwan HP. Cellular membrane potentials induced by alternating fields, Biophys. J. 1992;63:1632-42. http://dx.doi.org/10.1016/S0006-3495(92)81740-XGrosseCSchwanHPCellular membrane potentials induced by alternating fields, BiophysJ199263163242http://dx.doi.org/10.1016/S0006-3495(92)81740-X10.1016/S0006-3495(92)81740-XSearch in Google Scholar

Schwan HP and Foster K R. RF-field interactions with biological systems: Electrical properties and biophysical mechanisms. Proceedings of the IEEE 1980;68:104- 113. http://dx.doi.org/10.1109/PROC.1980.1158910.1109/PROC.1980.11589SchwanHPFosterK RRF-field interactions with biological systems: Electrical properties and biophysical mechanismsProceedings of the IEEE198068104113http://dx.doi.org/10.1109/PROC.1980.11589Open DOISearch in Google Scholar

Schoenbach KH, Nuccitelli R, Beebe SJ. Zap. IEEE Spectrum, 2006;43:20-7. http://dx.doi.org/10.1109/MSPEC.2006.166505210.1109/MSPEC.2006.1665052SchoenbachKHNuccitelliRBeebeSJZapIEEE Spectrum200643207http://dx.doi.org/10.1109/MSPEC.2006.1665052Open DOISearch in Google Scholar

Gowrishankar TR and Weaver JC. An approach to electrical modeling of single and multiple cells, PNAS 2003;100:3203-8. http://dx.doi.org/10.1073/pnas.06364341001262674410.1073/pnas.0636434100GowrishankarTRWeaverJC.An approach to electrical modeling of single and multiple cellsPNAS200310032038http://dx.doi.org/10.1073/pnas.063643410015227012626744Search in Google Scholar

Munoz San Martin M, Sebastian J L, Sancho M and Miranda J M. A study of the electric field distribution in erythrocyte and rod shape cells from direct RF exposure, Phys. Med. Biol. 2003;48: 1649–59. http://dx.doi.org/10.1088/0031-9155/48/11/31110.1088/0031-9155/48/11/311MunozSan Martin MSebastianJ LSanchoMMirandaJ MA study of the electric field distribution in erythrocyte and rod shape cells from direct RF exposure, PhysMed. Biol200348164959http://dx.doi.org/10.1088/0031-9155/48/11/31112817943Open DOISearch in Google Scholar

Sebastian JL, Munoz S, Sancho M and Miranda JM. Analysis of the influence of the cell geometry, orientation and cell proximity effects on the electric field distribution from direct RF exposure. Phys. Med. Biol. 2003;46:213-25. http://dx.doi.org/10.1088/0031-9155/46/1/315SebastianJLMunozSSanchoMMirandaJMAnalysis of the influence of the cell geometry, orientation and cell proximity effects on the electric field distribution from direct RF exposurePhys. Med. Biol20034621325http://dx.doi.org/10.1088/0031-9155/46/1/31510.1088/0031-9155/46/1/31511197673Search in Google Scholar

Liberti M, Apollonio F, Merla C and D'Inzeo G. Microdosimetry in the microwave range: a quantitative assessment at single cell level, IEEE Trans. Antennas and Wireless Propag. Lett. 2009;8:865-9 http://dx.doi.org/10.1109/LAWP.2009.202804510.1109/LAWP.2009.2028045LibertiMApollonioFMerlaCD'InzeoGMicrodosimetry in the microwave range: a quantitative assessment at single cell level, IEEE TransAntennas and Wireless Propag. Lett200988659http://dx.doi.org/10.1109/LAWP.2009.2028045Open DOISearch in Google Scholar

Ying W and Henriquez CS. Hybrid Finite Element Method for Describing the Electrical Response of Biological Cells to Applied Fields IEEE Trans. Biomed. Eng., 1998; 54:611-621.YingWHenriquezCSHybrid Finite Element Method for Describing the Electrical Response of Biological Cells to Applied Fields IEEE TransBiomed. Eng199854611621Search in Google Scholar

Emili G, Schiavoni A, Francavilla M, Roselli L and Sorrentino R. Computation of Electromagnetic Field Inside a Tissue at Mobile Communications Frequencies, IEEE Trans. MTT 2003;51:178-187. http://dx.doi.org/10.1109/TMTT.2002.80689910.1109/TMTT.2002.806899EmiliGSchiavoniAFrancavillaMRoselliLSorrentinoRComputation of Electromagnetic Field Inside a Tissue at Mobile Communications Frequencies, IEEE TransMTT200351178187http://dx.doi.org/10.1109/TMTT.2002.806899Open DOISearch in Google Scholar

Sebastian JL, Martın SMS, Sancho M and Miranda JM. Modeling the internal field distribution in human erythrocytes exposed to MW radiation, Bioelectrochemistry, 2004;64: 39– 45. http://dx.doi.org/10.1016/j.bioelechem.2004.02.00310.1016/j.bioelechem.2004.02.003SebastianJLMartınSMSSanchoMMirandaJMModeling the internal field distribution in human erythrocytes exposed to MW radiationBioelectrochemistry2004643945http://dx.doi.org/10.1016/j.bioelechem.2004.02.00315219245Open DOISearch in Google Scholar

Pucihar G, Kotnik T, Valič B and Miklavčič D. Numerical Determination of transmembrane voltage induced on irregularly shaped cells, Annals of Biomedical Engineering, 2006;34:642–652. http://dx.doi.org/10.1007/s10439-005-9076-21654760810.1007/s10439-005-9076-2PuciharGKotnikTValičBMiklavčičDNumerical Determination of transmembrane voltage induced on irregularly shaped cellsAnnals of Biomedical Engineering200634642652http://dx.doi.org/10.1007/s10439-005-9076-2Search in Google Scholar

Merla C, Liberti M, Apollonio F, Nervi C and D'Inzeo G. Dielectric spectroscopy of blood cells suspensions: study on geometrical structure of biological cells, Proc Conf. IEEE Eng Med Biol Soc. 2006;1:3194-7.MerlaCLibertiMApollonioFNerviCD'InzeoGDielectric spectroscopy of blood cells suspensions: study on geometrical structure of biological cells, Proc ConfIEEE Eng Med Biol Soc200613194710.1109/IEMBS.2006.259414Search in Google Scholar

Joshi RP, Hu Q and Schoenbach KH. Modeling Studies of Cell Response to Ultrashort, High-Intensity Electric Fields-Implications for Intracellular Manipulation, IEEE Trans. Plasma Sci., 2004;l32:1677-1686.JoshiRPHuQSchoenbachKHModeling Studies of Cell Response to Ultrashort, High-Intensity Electric Fields-Implications for Intracellular Manipulation, IEEE TransPlasma Sci20041321677168610.1109/TPS.2004.830971Search in Google Scholar

Gimsa J, Müller T, Schnelle T and Fuhr G. Dielectric Spectroscopy of Single Human Erythrocytes at Physiological Ionic Strength: Dispersion of the Cytoplasm Biophys. J., 1996;71:495-506.GimsaJMüllerTSchnelleTFuhrGDielectric Spectroscopy of Single Human Erythrocytes at Physiological Ionic Strength: Dispersion of the Cytoplasm BiophysJ19967149550610.1016/S0006-3495(96)79251-2Search in Google Scholar

Ellison WJ. Permittivity of pure water, at standard atmospheric pressure, over the frequency range 0-25 THz and the temperature range 0-100 °C, J. Phys. Chem. Ref. Data 2007;36:2-18. http://dx.doi.org/10.1063/1.2360986EllisonWJPermittivity of pure water, at standard atmospheric pressure, over the frequency range 0-25 THz and the temperature range 0-100 °C, JPhys. Chem. Ref. Data200736218http://dx.doi.org/10.1063/1.236098610.1063/1.2360986Search in Google Scholar

Reid CB, Pickwell-MacPherson E, Laufer JG, Gibson AP, Hebden JC, and Wallace V. Accuracy and resolution of THz reflection spectroscopy for medical imaging, Phys. Med. Biol. 2010;55: 4825–38. http://dx.doi.org/10.1088/0031-9155/55/16/01310.1088/0031-9155/55/16/013ReidCBPickwell-MacPhersonELauferJGGibsonAPHebdenJCWallaceVAccuracy and resolution of THz reflection spectroscopy for medical imaging, PhysMed. Biol201055482538http://dx.doi.org/10.1088/0031-9155/55/16/01320679693Open DOISearch in Google Scholar