Open Access

Impedance detection of the electrical resistivity of the wound tissue around deep brain stimulation electrodes permits registration of the encapsulation process in a rat model


Cite

Krack P, Hariz MI, Baunez C, Guridi J, Obeso JA. Deep brain stimulation: from neurology to psychiatry? Trends Neurosci. 2010;33:474-84. https://doi.org/10.1016/j.tins.2010.07.002KrackPHarizMIBaunezCGuridiJObesoJADeep brain stimulation: from neurology to psychiatry?Trends Neurosci20103347484doi.org/10.1016/j.tins.2010.07.002Open DOISearch in Google Scholar

Weaver FM, Follett K, Stern M, Hur K, Harris C, Marks WJ, Jr., et al. Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial. Jama. 2009;301:63-73. https://doi.org/10.1001/jama.2008.929WeaverFMFollettKSternMHurKHarrisCMarksWJ, Jr.Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trialJama20093016373doi.org/10.1001/jama.2008.929Open DOISearch in Google Scholar

Moro E, Lozano AM, Pollak P, Agid Y, Rehncrona S, Volkmann J, et al. Long-term results of a multicenter study on subthalamic and pallidal stimulation in Parkinson's disease. Mov Disord. 2010;25:578-86. https://doi.org/10.1002/mds.22735MoroELozanoAMPollakPAgidYRehncronaSVolkmannJLong-term results of a multicenter study on subthalamic and pallidal stimulation in Parkinson's diseaseMov Disord20102557886doi.org/10.1002/mds.22735Open DOISearch in Google Scholar

Pizzolato G, Mandat T. Deep brain stimulation for movement disorders. Front Integr Neurosci. 2012;6:2. https://doi.org/10.3389/fnint.2012.00002PizzolatoGMandatTDeep brain stimulation for movement disordersFront Integr Neurosci201262doi.org/10.3389/fnint.2012.00002Open DOISearch in Google Scholar

Gimsa U, Schreiber U, Habel B, Flehr J, van Rienen U, Gimsa J. Matching geometry and stimulation parameters of electrodes for deep brain stimulation experimentsnumerical considerations. J Neurosci Methods. 2006;150:212-27. https://doi.org/10.1016/j.jneumeth.2005.06.013GimsaUSchreiberUHabelBFlehrJvanRienen UGimsaJMatching geometry and stimulation parameters of electrodes for deep brain stimulation experimentsnumerical considerationsJ Neurosci Methods200615021227doi.org/10.1016/j.jneumeth.2005.06.013Open DOISearch in Google Scholar

Cheung T, Tagliati M. Deep brain stimulation: can we do it better? Clin Neurophysiol. 2010;121:1979-80. https://doi.org/10.1016/j.clinph.2010.05.024CheungTTagliatiMDeep brain stimulation: can we do it better?Clin Neurophysiol2010121197980doi.org/10.1016/j.clinph.2010.05.024Open DOISearch in Google Scholar

Okun MS, Gallo BV, Mandybur G, Jagid J, Foote KD, Revilla FJ, et al. Subthalamic deep brain stimulation with a constantcurrent device in Parkinson's disease: an open-label randomised controlled trial. Lancet Neurol. 2012;11:140-9. https://doi.org/10.1016/S1474-4422(11)70308-8OkunMSGalloBVMandyburGJagidJFooteKDRevillaFJSubthalamic deep brain stimulation with a constantcurrent device in Parkinson's disease: an open-label randomised controlled trialLancet Neurol2012111409doi.org/10.1016/S1474-4422(11)70308-810.1016/S1474-4422(11)70308-8Search in Google Scholar

Gross RE, McDougal ME. Technological advances in the surgical treatment of movement disorders. Curr Neurol Neurosci Rep. 2013;13:371. https://doi.org/10.1007/s11910-013-0371-2GrossREMcDougalMETechnological advances in the surgical treatment of movement disordersCurr Neurol Neurosci Rep201313371doi.org/10.1007/s11910-013-0371-210.1007/s11910-013-0371-2Search in Google Scholar

Lettieri C, Rinaldo S, Devigili G, Pisa F, Mucchiut M, Belgrado E, et al. Clinical outcome of deep brain stimulation for dystonia: constant-current or constant-voltage stimulation? A non-randomized study. Eur J Neurol. 2015;22:919-26. https://doi.org/10.1111/ene.12515LettieriCRinaldoSDevigiliGPisaFMucchiutMBelgradoEClinical outcome of deep brain stimulation for dystonia: constant-current or constant-voltage stimulation? A non-randomized studyEur J Neurol20152291926doi.org/10.1111/ene.12515Open DOISearch in Google Scholar

Benazzouz A, Gao DM, Ni ZG, Piallat B, Bouali-Benazzouz R, Benabid AL. Effect of high-frequency stimulation of the subthalamic nucleus on the neuronal activities of the substantia nigra pars reticulata and ventrolateral nucleus of the thalamus in the rat. Neurosci. 2000;99:289-95. https://doi.org/10.1016/S0306-4522(00)00199-8BenazzouzAGaoDMNiZGPiallatBBouali-BenazzouzRBenabidALEffect of high-frequency stimulation of the subthalamic nucleus on the neuronal activities of the substantia nigra pars reticulata and ventrolateral nucleus of the thalamus in the ratNeurosci20009928995doi.org/10.1016/S0306-4522(00)00199-810.1016/S0306-4522(00)00199-8Search in Google Scholar

Salin P, Manrique C, Forni C, Kerkerian-Le Goff L. Highfrequency stimulation of the subthalamic nucleus selectively reverses dopamine denervation-induced cellular defects in the output structures of the basal ganglia in the rat. J Neurosci. 2002;22:5137-48.SalinPManriqueCForniCKerkerian-Le Goff L. Highfrequency stimulation of the subthalamic nucleus selectively reverses dopamine denervation-induced cellular defects in the output structures of the basal ganglia in the ratJ Neurosci20022251374810.1523/JNEUROSCI.22-12-05137.2002Search in Google Scholar

Bruet N, Windels F, Carcenac C, Feuerstein C, Bertrand A, Poupard A, et al. Neurochemical mechanisms induced by high frequency stimulation of the subthalamic nucleus: increase of extracellular striatal glutamate and GABA in normal and hemiparkinsonian rats. J Neuropathol Exp Neurol. 2003;62:1228-40. https://doi.org/10.1093/jnen/62.12.1228BruetNWindelsFCarcenacCFeuersteinCBertrandAPoupardANeurochemical mechanisms induced by high frequency stimulation of the subthalamic nucleus: increase of extracellular striatal glutamate and GABA in normal and hemiparkinsonian ratsJ Neuropathol Exp Neurol200362122840doi.org/10.1093/jnen/62.12.1228Open DOISearch in Google Scholar

Windels F, Carcenac C, Poupard A, Savasta M. Pallidal origin of GABA release within the substantia nigra pars reticulata during high-frequency stimulation of the subthalamic nucleus. J Neurosci. 2005;25:5079-86. https://doi.org/10.1523/JNEUROSCI.0360-05.2005WindelsFCarcenacCPoupardASavastaMPallidal origin of GABA release within the substantia nigra pars reticulata during high-frequency stimulation of the subthalamic nucleusJ Neurosci200525507986doi.org/10.1523/JNEUROSCI.0360-05.2005Open DOISearch in Google Scholar

Boulet S, Lacombe E, Carcenac C, Feuerstein C, Sgambato-Faure V, Poupard A, et al. Subthalamic stimulation-induced forelimb dyskinesias are linked to an increase in glutamate levels in the substantia nigra pars reticulata. J Neurosci. 2006;26:10768-76. https://doi.org/10.1523/JNEUROSCI.3065-06.2006BouletSLacombeECarcenacCFeuersteinCSgambato-FaureVPoupardASubthalamic stimulation-induced forelimb dyskinesias are linked to an increase in glutamate levels in the substantia nigra pars reticulataJ Neurosci2006261076876doi.org/10.1523/JNEUROSCI.3065-06.2006Open DOISearch in Google Scholar

Schulte T, Brecht S, Herdegen T, Illert M, Mehdorn HM, Hamel W. Induction of immediate early gene expression by high-frequency stimulation of the subthalamic nucleus in rats. Neurosci. 2006;138:1377-85. https://doi.org/10.1016/j.neuroscience.2005.12.034SchulteTBrechtSHerdegenTIllertMMehdornHMHamelWInduction of immediate early gene expression by high-frequency stimulation of the subthalamic nucleus in ratsNeurosci2006138137785doi.org/10.1016/j.neuroscience.2005.12.034Open DOISearch in Google Scholar

Fang X, Sugiyama K, Akamine S, Namba H. Improvements in motor behavioral tests during deep brain stimulation of the subthalamic nucleus in rats with different degrees of unilateral parkinsonism. Brain research. 2006;1120:202-10. https://doi.org/10.1016/j.brainres.2006.08.073FangXSugiyamaKAkamineSNambaHImprovements in motor behavioral tests during deep brain stimulation of the subthalamic nucleus in rats with different degrees of unilateral parkinsonismBrain research2006112020210doi.org/10.1016/j.brainres.2006.08.073Open DOISearch in Google Scholar

So RQ, McConnell GC, August AT, Grill WM. Characterizing effects of subthalamic nucleus deep brain stimulation on methamphetamine-induced circling behavior in hemiParkinsonian rats. IEEE Trans Neural Syst Rehabil Eng. 2012;20:626-35. https://doi.org/10.1109/TNSRE.2012.2197761SoRQMcConnellGCAugustATGrillWMCharacterizing effects of subthalamic nucleus deep brain stimulation on methamphetamine-induced circling behavior in hemiParkinsonian ratsIEEE Trans Neural Syst Rehabil Eng20122062635doi.org/10.1109/TNSRE.2012.2197761Open DOISearch in Google Scholar

Cooperrider J, Furmaga H, Plow E. Chronic deep cerebellar stimulation promotes long-term potentiation, microstructural plasticity, and reorganization of perilesional cortical representation in a rodent model. J Neurosci. 2014;34:9040-50. https://doi.org/10.1523/JNEUROSCI.0953-14.2014CooperriderJFurmagaHPlowEChronic deep cerebellar stimulation promotes long-term potentiation, microstructural plasticity, and reorganization of perilesional cortical representation in a rodent modelJ Neurosci201434904050doi.org/10.1523/JNEUROSCI.0953-14.2014Open DOISearch in Google Scholar

Liu HY, Jin J, Tang JS, Sun WX, Jia H, Yang XP, et al. Chronic deep brain stimulation in the rat nucleus accumbens and its effect on morphine reinforcement. Addiction biology. 2008;13:40-6. https://doi.org/10.1111/j.1369-1600.2007.00088.xLiuHYJinJTangJSSunWXJiaHYangXPChronic deep brain stimulation in the rat nucleus accumbens and its effect on morphine reinforcementAddiction biology200813406doi.org/10.1111/j.1369-1600.2007.00088.xOpen DOISearch in Google Scholar

Forni C, Mainard O, Melon C, Goguenheim D, Kerkerian-Le Goff L, Salin P. Portable microstimulator for chronic deep brain stimulation in freely moving rats. J Neurosci Methods. 2012;209:50-7. https://doi.org/10.1016/j.jneumeth.2012.05.027ForniCMainardOMelonCGoguenheimDKerkerian-LeGoff LSalinPPortable microstimulator for chronic deep brain stimulation in freely moving ratsJ Neurosci Methods2012209507doi.org/10.1016/j.jneumeth.2012.05.027Open DOISearch in Google Scholar

Harnack D, Meissner W, Paulat R, Hilgenfeld H, Müller WD, Winter C, Morgenstern R, Kupsch A. 2008. Continuous high-frequency stimulation in freely moving rats: development of an implantable microstimulation system. J Neurosci Methods 2008;167:278-291 https://doi.org/10.1016/j.jneumeth.2007.08.019HarnackDMeissnerWPaulatRHilgenfeldHMüllerWDWinterCMorgensternRKupschA.2008Continuous high-frequency stimulation in freely moving rats: development of an implantable microstimulation systemJ Neurosci Methods 2008167278291doi.org/10.1016/j.jneumeth.2007.08.019Open DOISearch in Google Scholar

Badstuebner K, Gimsa U, Weber I, Tuchscherer A, Gimsa J. Deep brain stimulation of hemiparkinsonian rats with unipolar and bipolar electrodes for up to 6 weeks – behavioral testing of freely moving animals. Parkinson’s Dis. 2017. (In press).BadstuebnerKGimsaUWeberITuchschererAGimsaJDeep brain stimulation of hemiparkinsonian rats with unipolar and bipolar electrodes for up to 6 weeks – behavioral testing of freely moving animalsParkinson’s Dis2017(In press)10.1155/2017/5693589Search in Google Scholar

Ewing SG, Porr B, Riddell J, Winter C, Grace AA. SaBer DBS: a fully programmable, rechargeable, bilateral, chargebalanced preclinical microstimulator for long-term neural stimulation. J Neurosci Methods. 2013;213:228-35. https://doi.org/10.1016/j.jneumeth.2012.12.008EwingSGPorrBRiddellJWinterCGraceAASaBer DBS: a fully programmable, rechargeable, bilateral, chargebalanced preclinical microstimulator for long-term neural stimulationJ Neurosci Methods201321322835doi.org/10.1016/j.jneumeth.2012.12.008Open DOISearch in Google Scholar

Spieles-Engemann AL, Collier TJ, Sortwell CE. A functionally relevant and long-term model of deep brain stimulation of the rat subthalamic nucleus: advantages and considerations. European J Neurosci. 2010;32:1092-9. https://doi.org/10.1111/j.1460-9568.2010.07416.xSpieles-EngemannALCollierTJSortwellCEA functionally relevant and longterm model of deep brain stimulation of the rat subthalamic nucleus: advantages and considerationsEuropean J Neurosci20103210929doi.org/10.1111/j.1460-9568.2010.07416.xOpen DOISearch in Google Scholar

Gubellini P, Kachidian P. Animal models of Parkinson's disease: An updated overview. Revue neurologique. 2015;171:750-61. https://doi.org/10.1016/j.neurol.2015.07.011GubelliniPKachidianPAnimal models of Parkinson's disease: An updated overviewRevue neurologique201517175061doi.org/10.1016/j.neurol.2015.07.011Open DOISearch in Google Scholar

Gimsa J, Habel B, Schreiber U, van Rienen U, Strauss U, Gimsa U. Choosing electrodes for deep brain stimulation experiments--electrochemical considerations. J Neurosci Methods. 2005;142:251-65. https://doi.org/10.1016/j.jneumeth.2004.09.001GimsaJHabelBSchreiberUvanRienen UStraussUGimsaUChoosing electrodes for deep brain stimulation experiments--electrochemical considerationsJ Neurosci Methods200514225165doi.org/10.1016/j.jneumeth.2004.09.001Open DOISearch in Google Scholar

Herrington TM, Cheng JJ, Eskandar EN. Mechanisms of deep brain stimulation. J Neurophys. 2016;115:19-38. https://doi.org/10.1152/jn.00281.2015HerringtonTMChengJJEskandarENMechanisms of deep brain stimulationJ Neurophys20161151938doi.org/10.1152/jn.00281.2015Open DOISearch in Google Scholar

Ungerstedt U. 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur J Pharmacol. 1968;5:107-10. https://doi.org/10.1016/0014-2999(68)90164-7UngerstedtU6-Hydroxy-dopamine induced degeneration of central monoamine neuronsEur J Pharmacol1968510710doi.org/10.1016/0014-2999(68)90164-710.1016/0014-2999(68)90164-7Search in Google Scholar

Foster KR, Schwan HP. Dielectric properties of tissues. Handbook of biological effects of electromagnetic fields. 1995;2:25-102.FosterKRSchwanHPDielectric properties of tissuesHandbook of biological effects of electromagnetic fields1995225102Search in Google Scholar

Kerner TE, Paulsen KD, Hartov A, Soho SK, Poplack SP. Electrical impedance spectroscopy of the breast: clinical imaging results in 26 subjects. IEEE Trans Med Imaging. 2002;21:638-45. https://doi.org/10.1109/TMI.2002.800606KernerTEPaulsenKDHartovASohoSKPoplackSPElectrical impedance spectroscopy of the breast: clinical imaging results in 26 subjectsIEEE Trans Med Imaging20022163845doi.org/10.1109/TMI.2002.800606Open DOISearch in Google Scholar

Adler A, Amyot R, Guardo R, Bates JH, Berthiaume Y. Monitoring changes in lung air and liquid volumes with electrical impedance tomography. J Appl Physiol. 1997;83:1762-7.AdlerAAmyotRGuardoRBatesJHBerthiaumeYMonitoring changes in lung air and liquid volumes with electrical impedance tomographyJ Appl Physiol1997831762710.1152/jappl.1997.83.5.17629375349Search in Google Scholar

Lueck S, Reichert D, Pliquett U, Minor T, Preusse CJ. Bioelectric impedance of the neonatal heart during normothermic ischemia. Biomed Tech. 2013;58: Suppl. 1, Walter de Gruyter. Berlin, Boston. https://doi.org/10.1515/bmt-2013-4452LueckSReichertDPliquettUMinorTPreusseCJBioelectric impedance of the neonatal heart during normothermic ischemiaBiomed Tech201358Suppl. 1Walter de Gruyter. Berlin, Bostondoi.org/10.1515/bmt-2013-445210.1515/bmt-2013-4452Search in Google Scholar

Lempka SF, Miocinovic S, Johnson MD, Vitek JL, McIntyre CC. In vivo impedance spectroscopy of deep brain stimulation electrodes. J Neural Eng. 2009;6:046001. https://doi.org/10.1088/1741-2560/6/4/046001LempkaSFMiocinovicSJohnsonMDVitekJLMcIntyreCCIn vivo impedance spectroscopy of deep brain stimulation electrodesJ Neural Eng20096046001doi.org/10.1088/1741-2560/6/4/04600110.1088/1741-2560/6/4/046001Search in Google Scholar

Badstübner K, Kröger T, Mix E, Gimsa U, Benecke R, Gimsa J. Electrical impedance properties of deep brain stimulation electrodes during long-term in-vivo stimulation in the Parkinson model of the rat. In: Gabriel J, Schier J, Van Huffel S, Conchon E, Correia C, Fred A, et al., editors. Biomedical Engineering Systems and Technologies. Springer. 2013;357 ISBN:978-3-642-38255-0. pp. 287–97.BadstübnerKKrögerTMixEGimsaUBeneckeRGimsaJElectrical impedance properties of deep brain stimulation electrodes during long-term in-vivo stimulation in the Parkinson model of the ratGabrielJSchierJVan HuffelSConchonECorreiaCFredABiomedical Engineering Systems and TechnologiesSpringer2013357 ISBN:978-3-642-38255-0. pp2879710.1007/978-3-642-38256-7_19Search in Google Scholar

Williams JC, Hippensteel JA, Dilgen J, Shain W, Kipke DR. Complex impedance spectroscopy for monitoring tissue responses to inserted neural implants. J Neural Eng. 2007;4:410-23. https://doi.org/10.1088/1741-2560/4/4/007WilliamsJCHippensteelJADilgenJShainWKipkeDRComplex impedance spectroscopy for monitoring tissue responses to inserted neural implantsJ Neural Eng2007441023doi.org/10.1088/1741-2560/4/4/00710.1088/1741-2560/4/4/007Search in Google Scholar

Duan YY, Clark GM, Cowan RS. A study of intra-cochlear electrodes and tissue interface by electrochemical impedance methods in vivo. Biomaterials. 2004;25:3813-28. https://doi.org/10.1016/j.biomaterials.2003.09.107DuanYYClarkGMCowanRSA study of intra-cochlear electrodes and tissue interface by electrochemical impedance methods in vivoBiomaterials200425381328doi.org/10.1016/j.biomaterials.2003.09.107Open DOISearch in Google Scholar

Newbold C, Mergen S, Richardson R, Seligman P, Millard R, Cowan R, et al. Impedance changes in chronically implanted and stimulated cochlear implant electrodes. Cochlear Implants Int. 2014;15:191-9. https://doi.org/10.1179/1754762813Y.0000000050NewboldCMergenSRichardsonRSeligmanPMillardRCowanRImpedance changes in chronically implanted and stimulated cochlear implant electrodesCochlear Implants Int2014151919doi.org/10.1179/1754762813Y.0000000050Open DOISearch in Google Scholar

Grill WM, Mortimer JT. Electrical properties of implant encapsulation tissue. Ann Biomed Eng. 1994;22:23-33. https://doi.org/10.1007/BF02368219GrillWMMortimerJTElectrical properties of implant encapsulation tissueAnn Biomed Eng1994222333doi.org/10.1007/BF0236821910.1007/BF02368219Search in Google Scholar

Otto KJ, Johnson MD, Kipke DR. Voltage pulses change neural interface properties and improve unit recordings with chronically implanted microelectrodes. IEEE Trans Biomed Eng. 2006;53:333-40. https://doi.org/10.1109/TBME.2005.862530OttoKJJohnsonMDKipkeDRVoltage pulses change neural interface properties and improve unit recordings with chronically implanted microelectrodesIEEE Trans Biomed Eng20065333340doi.org/10.1109/TBME.2005.862530Open DOISearch in Google Scholar

Charlet de Sauvage R, Lima da Costa D, Erre JP, Aran JM. Electrical and physiological changes during short-term and chronic electrical stimulation of the normal cochlea. Hear. Res. 1997;110:119-34. https://doi.org/10.1016/S0378-5955(97)00066-XCharletde Sauvage RLima da CostaDErreJPAranJMElectrical and physiological changes during short-term and chronic electrical stimulation of the normal cochleaHear. Res199711011934doi.org/10.1016/S0378-5955(97)00066-X10.1016/S0378-5955(97)00066-XSearch in Google Scholar

Lempka SF, Johnson MD, Moffitt MA, Otto KJ, Kipke DR, McIntyre CC. Theoretical analysis of intracortical microelectrode recordings. J Neural Eng. 2011;8:045006. https://doi.org/10.1088/1741-2560/8/4/045006LempkaSFJohnsonMDMoffittMAOttoKJKipkeDRMcIntyreCCTheoretical analysis of intracortical microelectrode recordingsJ Neural Eng20118045006doi.org/10.1088/1741-2560/8/4/04500610.1088/1741-2560/8/4/045006319661821775783Search in Google Scholar

Abouzari MS, Berkemeier F, Schmitz G, Wilmer D. On the physical interpretation of constant phase elements. Solid State Ionics. 2009;180:922-7. https://doi.org/10.1016/j.ssi.2009.04.002AbouzariMSBerkemeierFSchmitzGWilmerDOn the physical interpretation of constant phase elementsSolid State Ionics20091809227doi.org/10.1016/j.ssi.2009.04.002Open DOISearch in Google Scholar

Jorcin J-B, Orazem ME, Pébère N, Tribollet B. CPE analysis by local electrochemical impedance spectroscopy. Electrochimica Acta. 2006;51:1473-9. https://doi.org/10.1016/j.electacta.2005.02.128JorcinJ-BOrazemMEPébèreNTribolletBCPE analysis by local electrochemical impedance spectroscopyElectrochimica Acta20065114739doi.org/10.1016/j.electacta.2005.02.128Open DOISearch in Google Scholar

MacDonald JR. Impedence Spectroscopy - Emphasizing Solid Materials and Systems. Wiley. 1987:1-346.MacDonaldJRImpedence Spectroscopy - Emphasizing Solid Materials and SystemsWiley19871346Search in Google Scholar

Bisquert J, Garcia-Belmonte G, Bueno P, Longo E, Bulhoes L. Impedance of constant phase element (CPE)-blocked diffusion in film electrodes. J Neuropathol Exp Neurol. 1998;452:229-34. https://doi.org/10.1016/s0022-0728(98)00115-6BisquertJGarcia-BelmonteGBuenoPLongoEBulhoesLImpedance of constant phase element (CPE)-blocked diffusion in film electrodesJ Neuropathol Exp Neurol199845222934doi.org/10.1016/s0022-0728(98)00115-610.1016/S0022-0728(98)00115-6Search in Google Scholar

Conway BE, Bockris JO'M, White RE. Modern Aspects of Electrochemistry. Springer. 1999. ISBN:978-0306459641ConwayBEBockrisJO'MWhiteREModern Aspects of ElectrochemistrySpringer1999ISBN:978-0306459641Search in Google Scholar

Minnikanti S, Pereira MG, Jaraiedi S, Jackson K, Costa-Neto CM, Li Q, et al. In vivo electrochemical characterization and inflammatory response of multiwalled carbon nanotubebased electrodes in rat hippocampus. J Neural Eng. 2010;7:16002. https://doi.org/10.1088/1741-2560/7/1/016002MinnikantiSPereiraMGJaraiediSJacksonKCosta-NetoCMLiQIn vivo electrochemical characterization and inflammatory response of multiwalled carbon nanotubebased electrodes in rat hippocampusJ Neural Eng2010716002doi.org/10.1088/1741-2560/7/1/01600210.1088/1741-2560/7/1/016002Search in Google Scholar

Nowak K, Mix E, Gimsa J, Strauss U, Sriperumbudur KK, Benecke R, et al. Optimizing a rodent model of Parkinson's disease for exploring the effects and mechanisms of deep brain stimulation. Parkinson’s Dis. 2011;2011:414682.NowakKMixEGimsaJStraussUSriperumbudurKKBeneckeROptimizing a rodent model of Parkinson's disease for exploring the effects and mechanisms of deep brain stimulationParkinson’s Dis2011201141468210.4061/2011/414682Search in Google Scholar

Asami K. Characterization of heterogeneous systems by dielectric spectroscopy. Progress in Polymer Science. 2002;27:1617-59. https://doi.org/10.1016/S0079-6700(02)00015-1AsamiKCharacterization of heterogeneous systems by dielectric spectroscopyProgress in Polymer Science200227161759doi.org/10.1016/S0079-6700(02)00015-110.1016/S0079-6700(02)00015-1Search in Google Scholar

Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates, Sixth Edition: Hard Cover Edition. Academic Press. 2007. ISBN: 978-0125476126.PaxinosGWatsonCThe Rat Brain in Stereotaxic Coordinates, Sixth Edition: Hard Cover EditionAcademic Press2007ISBN: 978-0125476126Search in Google Scholar

Ahmad Z. Polymeric dielectric materials, in Dielectric Material, ed. by Silaghi MA. InTech, Rijeka. 2012; 3-26.AhmadZPolymeric dielectric materialsDielectric MaterialSilaghiMAInTech, Rijeka201232610.5772/50638Search in Google Scholar

Onaral B, Schwan H. Linear and nonlinear properties of platinum electrode polarisation. Part 1: frequency dependence at very low frequencies. Medical and biological engineering and computing. 1982;20:299-306. https://doi.org/10.1007/BF02442796OnaralBSchwanHLinear and nonlinear properties of platinum electrode polarisationPart 1: frequency dependence at very low frequencies. Medical and biological engineering and computing198220299306doi.org/10.1007/BF0244279610.1007/BF024427967109725Search in Google Scholar

Gabriel S, Lau R, Gabriel C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol. 1996;41:2251. https://doi.org/10.1088/0031-9155/41/11/002GabrielSLauRGabrielCThe dielectric properties of biological tissues: IIMeasurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol1996412251doi.org/10.1088/0031-9155/41/11/00210.1088/0031-9155/41/11/0028938025Search in Google Scholar

Wintermantel E. Medizintechnik mit biokompatiblen Werkstoffen und Verfahren. Springer. 2002. ISBN:978-3540412618WintermantelEMedizintechnik mit biokompatiblen Werkstoffen und VerfahrenSpringer2002ISBN:978-3540412618Search in Google Scholar

Stubbe M, Gimsa J. Maxwell's mixing equation revisited: characteristic impedance equations for ellipsoidal cells. Biophys. J. 2015;109:194-208. https://doi.org/10.1016/j.bpj.2015.06.021StubbeMGimsaJMaxwell's mixing equation revisited: characteristic impedance equations for ellipsoidal cellsBiophys. J2015109194208doi.org/10.1016/j.bpj.2015.06.021Open DOISearch in Google Scholar