Open Access

A biologically inspired approach to feasible gait learning for a hexapod robot

International Journal of Applied Mathematics and Computer Science's Cover Image
International Journal of Applied Mathematics and Computer Science
Computational Intelligence in Modern Control Systems (special section, pp. 7 - 84), Józef Korbicz and Dariusz Uciński (Eds.)

Cite

Albiez, J. and Berns, K. (2004). Biological inspired walking—How much nature do we need?, in M. A. Armada and P. de González Santos (Eds), Climbing and Walking Robots. Proceedings of the 7th International Conference CLAWAR 2004, Springer, Berlin, pp. 357-364.Search in Google Scholar

Annunziato, M. and Pizzuti, S. (2000). Adaptive parameterization of evolutionary algorithms driven by reproduction and competition, Proceedings of the European Symposium on Intelligent Techniques (ESIT 2000), Aachen, Germany, pp. 31-35.Search in Google Scholar

Arabas, J. (2001). Lectures on Evolutionary Algorithms, WNT, Warsaw, (in Polish).Search in Google Scholar

Bäck, T., Hoffmeister, F. and H.-P. Schwefel (1991). A survey of evolution strategies, in R. K. Belew and L. B. Booker (Eds), Proceedings of the 4th International Conference on Genetic Algorithms, Morgan Kaufmann, San Francisco, CA, pp. 2-9.Search in Google Scholar

Barfoot, T. D., Earon, E. J. P. and D'Eleuterio, G. M. T. (2006). Experiments in learning distributed control for a hexapod robot, Robotics and Autonomous Systems 54(10): 864-872.10.1016/j.robot.2006.04.009Search in Google Scholar

Beer, R. D., Quinn, R. D., Chiel, H. J. and Ritzmann, R. E. (1997). Biologically inspired approaches to robotics: What can we learn from insects?, Communications of the ACM 40(3): 31-38.10.1145/245108.245118Search in Google Scholar

Belter, D., Kasiński, A. and Skrzypczyński, P. (2008). Evolving feasible gaits for a hexapod robot by reducing the space of possible solutions, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, pp. 2673-2678.Search in Google Scholar

Belter, D. and Skrzypczyński, P. (2009). Population based methods for identification and optimization of a walking robot model, in K. Kozlowski (Ed.), Robot Motion and Control 2009, Lecture Notes in Control and Information Sciences, Vol. 396, Springer, Berlin, pp. 185-195.10.1007/978-1-84882-985-5_18Search in Google Scholar

Busch, J., Ziegler, J., Aue, C., Ross, A., Sawitzki, D. and Banzhaf, W. (2002). Automatic generation of control programs for walking robots using genetic programming, in J. Foster, E. Lutton, J. Miller, C. Ryan and A. Tettamanzi (Eds), Genetic Programming, Proceedings of the 5th European Conference EuroGP 2002, Lecture Notes in Computer Science, Vol. 2278, Springer, Berlin, pp. 258-267.10.1007/3-540-45984-7_25Search in Google Scholar

Chernova, S. and Veloso, M. (2004). An evolutionary approach to gait learning for four-legged robots, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, New Orleans, LA, USA, pp. 2562-2567.Search in Google Scholar

Dorigo, M. and Colombetti, M. (1997). Robot Shaping: An Experiment in Behavior Engineering, MIT Press, Cambridge, MA.10.7551/mitpress/5988.001.0001Search in Google Scholar

Figliolini, G., Stan, S.-D. and Rea, P. (2007). Motion analysis of the leg tip of a six-legged walking robot, Proceedings of the 12th IFToMM World Congress, Besançon, France, (on CD-ROM).Search in Google Scholar

Fukuoka, Y., Kimura, H. and Cohen, A. H. (2003). Adaptive dynamic walking of a quadruped robot on irregular terrain based on biological concepts, International Journal on Robotics Research 22(4): 187-202.10.1177/0278364903022003004Search in Google Scholar

Gallagher, J., Beer, D. R., Espenschied, K. and Quinn, R. D. (1996). Application of evolved locomotion controllers to a hexapod robot, Robotics and Autonomous Systems 19(1): 95-103.10.1016/S0921-8890(96)00036-XSearch in Google Scholar

Goldberg, D. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Reading, MA.Search in Google Scholar

Holland, J. (1975). Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, MI.Search in Google Scholar

Hornby, G., Takamura, S., Yamamoto, T. and Fujita, M. (2005). Autonomous evolution of dynamic gaits with two quadruped robots, IEEE Transactions on Robotics 21(3): 402-410.10.1109/TRO.2004.839222Search in Google Scholar

Huber, M. and Grupen, R. A. (1997). A feedback control structure for on-line learning tasks, Robotics and Autonomous Systems 22(3-4): 303-315.10.1016/S0921-8890(97)00044-4Search in Google Scholar

Jakobi, N. (1998). Running across the reality gap: Octopod locomotion evolved in a minimal simulation, in P. Husbands and J.-A. Meyer (Eds), Evolutionary Robotics. Proceedings of the First European Workshop EvoRobot98, Lecture Notes in Computer Science, Vol. 1468, Springer, Berlin, pp. 39-58.10.1007/3-540-64957-3_63Search in Google Scholar

Jakobi, N., Husbands, P. and Harvey, I. (1995). Noise and the reality gap: The use of simulation in evolutionary robotics, Proceedings of the 3rd European Conference on Articial Life (ECAL'95), Granada, Spain, pp. 704-720.Search in Google Scholar

Kimura, H., Yamashita, T. and Kobayashi, S. (2001). Reinforcement learning of walking behavior for a four-legged robot, Proceedings of the IEEE Conference on Decisions and Control, Orlando, FL, USA, pp. 411-416.Search in Google Scholar

Kirchner, F. (1998). Q-learning of complex behaviours on a six-legged walking machine, Robotics and Autonomous Systems 25(3-4): 256-263.10.1016/S0921-8890(98)00054-2Search in Google Scholar

Kowalczuk, Z. and Białaszewski, T. (2006). Niching mechanisms in evolutionary computations, International Journal of Applied Mathematics and Computer Science 16(1): 59-84.Search in Google Scholar

Kozlowski, K. (1998). Modelling and Identification in Robotics, Springer, Berlin.10.1007/978-1-4471-0429-2Search in Google Scholar

Kumar, V. R. and Waldron, K. J. (1989). Adaptive gait control for a walking robot, Journal of Robotic Systems 6(1): 49-76.10.1002/rob.4620060105Search in Google Scholar

Lewis, M., Fagg, A. and Bekey, G. (1994). Genetic algorithms for gait synthesis in a hexapod robot, in Y. Zheng (Ed.), Recent Trends in Mobile Robots, World Scientific, Singapore, pp. 317-331.10.1142/9789814354301_0011Search in Google Scholar

Luk, B. L., Galt, S. and Chen, S. (2001). Using genetic algorithms to establish efficient walking gaits for an eight-legged robot, International Journal of Systems Science 32(6): 703-713.10.1080/00207720117230Search in Google Scholar

Maes, P. and Brooks, R. A. (1990). Learning to coordinate behaviors, Proceedings of the 8th National Conference on Artificial Intelligence (AAAI 1990), Boston, MA, USA, pp. 796-802.Search in Google Scholar

Mataric, M. and Cliff, D. (1996). Challenges in evolving controllers for physical robots, Robotics and Autonomous Systems 19(1): 67-83.10.1016/S0921-8890(96)00034-6Search in Google Scholar

Parker, G. B. and Mills, J.W. (1999). Adaptive hexapod gait control using anytime learning with fitness biasing, Proceedings of the Genetic and Evolutionary Computation Conference, Orlando, FL, USA, pp. 519-524.Search in Google Scholar

Perry, M. J., Koh, C. G. and Choo, Y. S. (2006). Modified genetic algorithm strategy for structural identification, Automatica 84(8-9): 529-540.10.1016/j.compstruc.2005.11.008Search in Google Scholar

Ridderström, C. (1999). Legged locomotion control—A literature survey, Technical Report TRITA-MMK 1999:27, Royal Institute of Technology, Stockholm.Search in Google Scholar

Ritzmann, R. E., Quinn, R. D. and Fischer, M. C. (2004). Convergent evolution and locomotion through complex terrain by insects, vertebrates and robots, Arthropod Structure & Development 33(3): 361-379.10.1016/j.asd.2004.05.001Search in Google Scholar

Skrzypczyński, P. (2004a). Experimental validation of the fuzzy reactive behaviours evolved in simulation, in F. Groen, N. Amato, A. Bonarini, E. Yoshida and B. Kröse (Eds), Intelligent Autonomous Systems 8, IOS Press, Amsterdam, pp. 464-471.Search in Google Scholar

Skrzypczyński, P. (2004b). Shaping in a realistic simulation: An approach to learn reactive fuzzy rules, Preprints of the 5th IFAC/EURON Symposium on Intelligent Autonomous Vehicles, Lisbon, Portugal, (on CD-ROM).10.1016/S1474-6670(17)32083-9Search in Google Scholar

Smith, R. (2007). Open dynamics engine http://www.ode.orgSearch in Google Scholar

Song, S.-M. and Waldron, K. J. (1989). Machines that Walk: The Adaptive Suspension Vehicle, MIT Press, Cambridge, MA.Search in Google Scholar

Svinin, M. M., Yamada, K. and Ueda, K. (2001). Emergent synthesis of motion patterns for locomotion robots, Artificial Intelligence in Engineering 15(4): 353-363.10.1016/S0954-1810(01)00027-9Search in Google Scholar

Tuyls, K., Maes, S. and Manderick, B. (2003). Reinforcement learning in large state spaces: Simulated robotic soccer as a testbed, RoboCup 2002: Robot Soccer World Cup VI, Lecture Notes in Computer Science, Vol. 2752, Springer, Berlin, pp. 319-326.Search in Google Scholar

Walas, K., Belter, D. and Kasiński, A. (2008). Control and environment sensing system for a six-legged robot, Journal of Automation, Mobile Robotics and Intelligent Systems 2(3): 26-31.Search in Google Scholar

Walker, J., Garrett, S. and Wilson, M. (2003). Evolving controllers for real robots: A survey of the literature, Adaptive Behavior 11(3): 179-203.10.1177/1059712303113003Search in Google Scholar

Wilson, D. M. (1966). Insect walking, Annaul Reiew of Entomology 11(1): 103-122.10.1146/annurev.en.11.010166.000535Search in Google Scholar

Yang, J.-M. (2009). Fault-tolerant gait planning for a hexapod robot walking over rough terrain, Journal of Intelligent and Robotic Systems 54(4): 613-627.10.1007/s10846-008-9282-xSearch in Google Scholar

Zagal, J. C., Ruiz-del-Solar, J. and Vallejos, P. (2004). Back to reality: Crossing the reality gap in evolutionary robotics, Preprints of the 5th IFAC/EURON Symposium on Intelligent Autonomous Vehicles, Lisbon, Portugal, (on CD-ROM).10.1016/S1474-6670(17)32084-0Search in Google Scholar

ISSN:
1641-876X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Mathematics, Applied Mathematics