Open Access

Application of Normalized Compression Distance and Lempel-Ziv Jaccard Distance in Micro-electrode Signal Stream Classification for the Surgical Treatment of Parkinson’s Disease


Cite

Bifet, A., Pfahringer, B., Read, J., & Holmes, G. (2013). Efficient Data Stream Classification via Probabilistic Adaptive Windows. In Proceedings of the 28th Annual ACM Symposium on Applied Computing (pp. 801–806). New York, NY, USA: ACM. doi: 10.1145/2480362.248051610.1145/2480362.2480516Open DOISearch in Google Scholar

Bifet, A., Gavaldà, R., Holmes, G., & Pfahringer, B. (2018). Machine Learning for Data Streams with Practical Examples in MOA. MIT Press.10.7551/mitpress/10654.001.0001Search in Google Scholar

Ciecierski, K. A. (2013). Decision Support System for surgical treatment of Parkinson’s disease (PhD thesis). Warsaw University of Technology.Search in Google Scholar

Cilibrasi, R., & Vitanyi, P. M. B. (2005). Clustering by compression. IEEE Transactions on Information Theory, 51(4), 1523–1545. doi: 10.1109/TIT.2005.84405910.1109/TIT.2005.844059Open DOISearch in Google Scholar

Cilibrasi, R. (2007). Statistical Inference Through Data Compression (PhD thesis). Institute for Logic, Language and Computation, University of Amsterdam.Search in Google Scholar

Cohen, A. R., & Vitanyi, P. M. B. (2015). Normalized Compression Distance of Multisets with Applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(8), 1602–1614. doi: 10.1109/TPAMI.2014.237517510.1109/TPAMI.2014.2375175Search in Google Scholar

Hebb, A. O., Zhang, J. J., Mahoor, M. H., Tsiokos, C., Matlack, C., Chizeck, H. J., & Pouratian, N. (2014). Creating the Feedback Loop. Neurosurgery Clinics of North America, 25(1), 187–204. doi: 10.1016/j.nec.2013.08.00610.1016/j.nec.2013.08.006Open DOISearch in Google Scholar

Hell, F., Köglsperger, T., Mehrkens, J., & Boetzel, K. (2018). Improving the Standard for Deep Brain Stimulation Therapy: Target Structures and Feedback Signals for Adaptive Stimulation. Current Perspectives and Future Directions. Cureus, 10(4). doi: 10.7759/cureus.246810.7759/cureus.2468Open DOISearch in Google Scholar

Kuhner, A., Schubert, T., Cenciarini, M., Wiesmeier, I. K., Coenen, V. A., Burgard, W., Weiller, C., et al. (2017). Correlations between Motor Symptoms across Different Motor Tasks, Quantified via Random Forest Feature Classification in Parkinson’s Disease. Frontiers in Neurology, 8:607. doi: 10.3389/fneur.2017.0060710.3389/fneur.2017.00607Search in Google Scholar

Losing, V., Hammer, B., & Wersing, H. (2018). Tackling heterogeneous concept drift with the Self-Adjusting Memory (SAM). Knowledge and Information Systems, 54(1), 171–201. doi: 10.1007/s10115-017-1137-y10.1007/s10115-017-1137-yOpen DOISearch in Google Scholar

Mamun, K. A., Mace, M., Lutman, M. E., Stein, J., Liu, X., Aziz, T., Vaidyana-than, R., et al. (2015). Movement decoding using neural synchronization and inter-hemispheric connectivity from deep brain local field potentials. Journal of Neural Engineering, 12(5), 056011. doi: 10.1088/1741-2560/12/5/05601110.1088/1741-2560/12/5/056011Search in Google Scholar

Mohammed, A., Bayford, R., & Demosthenous, A. (2018). Toward adaptive deep brain stimulation in Parkinson’s disease: a review. Neurodegenerative Disease Management, 8(2), 115–136. doi: 10.2217/nmt-2017-005010.2217/nmt-2017-0050Open DOISearch in Google Scholar

O’Halloran, R., Kopell, B. H., Sprooten, E., Goodman, W. K., & Frangou, S. (2016). Multimodal Neuroimaging-Informed Clinical Applications in Neuropsychiatric Disorders. Frontiers in Psychiatry, 7:63. doi: 10.3389/fpsyt.2016.0006310.3389/fpsyt.2016.00063Open DOISearch in Google Scholar

Poewe, W., Seppi, K., Tanner, C. M., Halliday, G. M., Brundin, P., Volkmann, J., Schrag, A. L., et al. (2017). Parkinson disease. Nature Reviews Disease Primers, 3:17013. doi: 10.1038/nrdp.2017.1310.1038/nrdp.2017.13Open DOISearch in Google Scholar

Raff, E., & Nicholas, C. (2017). An Alternative to NCD for Large Sequences, Lempel-Ziv Jaccard Distance. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1007–1015). ACM Press. doi: 10.1145/3097983.309811110.1145/3097983.3098111Open DOISearch in Google Scholar

Rajpurohit, V., Danish, S. F., Hargreaves, E. L., & Wong, S. (2015). Optimizing computational feature sets for subthalamic nucleus localization in DBS surgery with feature selection. Clinical Neurophysiology, 126(5), 975–982. doi: 10.1016/j.clinph.2014.05.03910.1016/j.clinph.2014.05.039Open DOISearch in Google Scholar

Santaniello, S., Gale, J. T., & Sarma, S. V. (2018). Systems approaches to optimizing deep brain stimulation therapies in Parkinson’s disease. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 10(5), e1421. doi: 10.1002/wsbm.142110.1002/wsbm.1421Open DOISearch in Google Scholar

Shamir, R. R., Dolber, T., Noecker, A. M., Walter, B. L., & McIntyre, C. C. (2015). Machine Learning Approach to Optimizing Combined Stimulation and Medication Therapies for Parkinson’s Disease. Brain Stimulation, 8(6), 1025–1032. doi: 10.1016/j.brs.2015.06.00310.1016/j.brs.2015.06.003Open DOISearch in Google Scholar

Shamir, R. R., Duchin, Y., Kim, J., Patriat, R., Marmor, O., Bergman, H., Vitek, J. L., et al. (2018). Microelectrode Recordings Validate the Clinical Visualization of Subthalamic-Nucleus Based on 7T Magnetic Resonance Imaging and Machine Learning for Deep Brain Stimulation Surgery. Neuro-surgery. doi: 10.1093/neuros/nyy21210.1093/neuros/nyy212Open DOISearch in Google Scholar

Su, F., Wang, J., Niu, S., Li, H., Deng, B., Liu, C., & Wei, X. (2018). Nonlinear predictive control for adaptive adjustments of deep brain stimulation parameters in basal ganglia-thalamic network. Neural Networks, 98, 283–295. doi: 10.1016/j.neunet.2017.12.00110.1016/j.neunet.2017.12.001Open DOISearch in Google Scholar

Taghva, A. (2011). Hidden Semi-Markov Models in the Computerized Decoding of Microelectrode Recording Data for Deep Brain Stimulator Placement. World Neurosurgery, 75(5–6), 758–763.e4. doi: 10.1016/j.wneu.2010.11.00810.1016/j.wneu.2010.11.008Open DOISearch in Google Scholar

Teplitzky, B. A., Zitella, L. M., Xiao, Y., & Johnson, M. D. (2016). Model-Based Comparison of Deep Brain Stimulation Array Functionality with Varying Number of Radial Electrodes and Machine Learning Feature Sets. Frontiers in Computational Neuroscience, 10:58. doi: 10.3389/fncom.2016.0005810.3389/fncom.2016.00058Open DOISearch in Google Scholar

Trevathan, J. K., Yousefi, A., Park, H. O., Bartoletta, J. J., Ludwig, K. A., Lee, K. H., & Lujan, J. L. (2017). Computational Modeling of Neurotransmitter Release Evoked by Electrical Stimulation: Nonlinear Approaches to Predicting Stimulation-Evoked Dopamine Release. ACS Chemical Neuro-science, 8(2), 394–410. doi: 10.1021/acschemneuro.6b0031910.1021/acschemneuro.6b00319Open DOISearch in Google Scholar

Valsky, D., Marmor-Levin, O., Deffains, M., Eitan, R., Blackwell, K., Bergman, H., & Israel, Z. (2017). Stop! Border Ahead: Automatic detection of subthalamic exit during deep brain stimulation surgery. Movement Disorders, 32(1), 70–79. doi: 10.1002/mds.2680610.1002/mds.26806Open DOISearch in Google Scholar

Wong, S., Baltuch, G. H., Jaggi, J. L., & Danish, S. F. (2009). Functional localization and visualization of the subthalamic nucleus from microelectrode recordings acquired during DBS surgery with unsupervised machine learning. Journal of Neural Engineering, 6(2), 026006. doi: 10.1088/1741-2560/6/2/02600610.1088/1741-2560/6/2/026006Open DOISearch in Google Scholar

eISSN:
2199-6059
ISSN:
0860-150X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Philosophy, other