Open Access

Nanoscale dosimetric consequences around bismuth, gold, gadolinium, hafnium, and iridium nanoparticles irradiated by low energy photons


Cite

1. Afkham Y, Mesbahi A, Alemi A, et al. Design and fabrication of a Nano-based neutron shield for fast neutrons from medical linear accelerators in radiation therapy. Radiat Oncol. 2020;15:105.10.1186/s13014-020-01551-1721651932393290Search in Google Scholar

2. Ahmad R, Schettino G, Royle G, et al. Radiobiological Implications of Nanoparticles Following Radiation Treatment. Part Part Syst Charact. 2020;37(4):1900411.10.1002/ppsc.201900411842746834526737Search in Google Scholar

3. Badrigilan S, Shaabani B, Aghaji NG, Mesbahi A. Graphene Quantum Dots-Coated Bismuth Nanoparticles for Improved CT Imaging and Photothermal Performance. Int J Nanosci. 2020;19(1):18500453.10.1142/S0219581X18500436Search in Google Scholar

4. Badrigilan S, Shaabani B, Gharehaghaji N, Mesbahi A. Iron oxide/bismuth oxide nanocomposites coated by graphene quantum dots: Three-in-one theranostic agents for simultaneous CT/MR imaging-guided in vitro photothermal therapy. Photodiagn Photodyn Ther. 2019;25:504-51410.1016/j.pdpdt.2018.10.02130385298Search in Google Scholar

5. Ghasemi-Jangjoo A, Ghiasi H. Monte Carlo study on the gold and gadolinium nanoparticles radio-sensitizer effect in the prostate 125I seeds radiotherapy. Pol J Med Phys Eng. 2019;25(3):165-169.10.2478/pjmpe-2019-0022Search in Google Scholar

6. Kuncic Z, Lacombe S. Nanoparticle radio-enhancement: Principles, progress and application to cancer treatment. Phys Med Biol. 2018;63:02TR01.10.1088/1361-6560/aa99ce29125831Search in Google Scholar

7. Mortezazadeh T, Gholibegloo E, Khoobi M, et al. In vitro and in-ávivo characteristics of doxorubicin-loaded cyclodextrine-based polyester modified gadolinium oxide nanoparticles: a versatile targeted theranostic system for tumour chemotherapy and molecular resonance imaging. J Drug Targeting. 2020;28(5):533-546.10.1080/1061186X.2019.170318831842616Search in Google Scholar

8. Pirayesh Islamian J, Hatamian M, Aval NA, et al. Targeted superparamagnetic nanoparticles coated with 2-deoxy-D-gloucose and doxorubicin more sensitize breast cancer cells to ionizing radiation. Breast. 2017;33:97-103.10.1016/j.breast.2017.03.00928351000Search in Google Scholar

9. Sadeghian M, Akhlaghi P, Mesbahi A. Investigation of imaging properties of novel contrast agents based on gold, silver and bismuth nanoparticles in spectral computed tomography using Monte Carlo simulation. Pol J Med Phys Eng. 2020;26:21-29.10.2478/pjmpe-2020-0003Search in Google Scholar

10. Yazdani P, Mansouri E, Eyvazi S, et al. Layered double hydroxide nanoparticles as an appealing nanoparticle in gene/plasmid and drug delivery system in C2C12 myoblast cells. Artif Cells Nanomed Biotechnol. 2019;47(1):436-442.10.1080/21691401.2018.155918230704300Search in Google Scholar

11. Delorme R, Taupin F, Flaender M, et al. Comparison of gadolinium nanoparticles and molecular contrast agents for radiation therapy-enhancement. Med.Phys. 2017;44(11):5949-5960.Search in Google Scholar

12. Hwang C, Kim JM, Kim J. Influence of concentration, nanoparticle size, beam energy, and material on dose enhancement in radiation therapy. J Rad Res. 2017;58(4):405-411.10.1093/jrr/rrx009556970428419319Search in Google Scholar

13. Jangjoo AG, Ghiasi H, Mesbahi A. A Monte Carlo study on the radio-sensitization effect of gold nanoparticles in brachytherapy of prostate by 103Pd seeds. Pol J Med Phys Eng. 2019;25(2):87-92.10.2478/pjmpe-2019-0012Search in Google Scholar

14. Maggiorella L, Barouch G, Devaux C, et al. Nanoscale radiotherapy with hafnium oxide nanoparticles. Future Oncol. 2012;8:1167-1181.10.2217/fon.12.9623030491Search in Google Scholar

15. Matsumoto K, Saitoh H, Doan TLH, et al. Destruction of tumor mass by gadolinium-loaded nanoparticles irradiated with monochromatic X-rays: Implications for the Auger therapy. Sci Rep. 2019;9:13275.10.1038/s41598-019-49978-1676899731570738Search in Google Scholar

16. McMahon SJ, Mendenhall MH, Jain S, Currell F. Radiotherapy in the presence of contrast agents: A general figure of merit and its application to gold nanoparticles. Phys Med Biol .2008;53:5635-5651.10.1088/0031-9155/53/20/00518812647Search in Google Scholar

17. Mesbahi A. A review on gold nanoparticles radiosensitization effect in radiation therapy of cancer. Rep Pract Oncol Radiother. 2010;15(6):176-180.10.1016/j.rpor.2010.09.001386317724376946Search in Google Scholar

18. McMahon SJ, Hyland WB, Muir MF,. Erratum: Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles. (Scientific Reports). Sci Rep. 2013;3:1725.10.1038/srep01725Search in Google Scholar

19. Verry C, Porcel E, Chargari C, et al. Use of nanoparticles as radiosensitizing agents in radiotherapy: State of play. Cancer Radiother. 2019;23(8):917-921.10.1016/j.canrad.2019.07.13431540838Search in Google Scholar

20. Carter JD, Cheng NN, Qu Y, et al. Nanoscale energy deposition by X-ray absorbing nanostructures. J Phys Chem B. 2007;111(40):11622-1162510.1021/jp075253u17854220Search in Google Scholar

21. Casta R, Champeaux JP, Cafarelli P, et al. Model for electron emission of high-Z radio-sensitizing nanoparticle irradiated by X-rays. J Nanopart Res. 2014;16:2480.10.1007/s11051-014-2480-5Search in Google Scholar

22. Casta R, Champeaux JP, Sence M, et al. Comparison between gold nanoparticle and gold plane electron emissions: a way to identify secondary electron emission. Phys Med Biol. 2015;60(23):9095-910510.1088/0031-9155/60/23/909526561787Search in Google Scholar

23. Casta R, Champeaux KP, Sence M, et al. Gold nanoparticle electron and photon emissions after X-ray absorption. J Phys Conf Ser. 2015;635(10):102018.10.1088/1742-6596/635/10/102018Search in Google Scholar

24. Leung MKK, Chow JCL, Chithrani BD, et al. Irradiation of gold nanoparticles by x-rays: Monte Carlo simulation of dose enhancements and the spatial properties of the secondary electrons production. Med Phys. 2011;38:624-63110.1118/1.353962321452700Search in Google Scholar

25. Liu Y, Zhang P, Li F, et al. Metal-based NanoEnhancers for future radiotherapy: Radiosensitizing and synergistic effects on tumor cells. Theranostics. 2018;81824-1849.10.7150/thno.22172585850329556359Search in Google Scholar

26. Sancey L, Lux F, Kotb S, et al. The use of theranostic gadolinium-based nanoprobes to improve radiotherapy efficacy. Br J Radiol. 2014;87:20140134.10.1259/bjr.20140134445314624990037Search in Google Scholar

27. Taupin F, Flaender M, Delorme R, et al. Gadolinium nanoparticles and contrast agent as radiation sensitizers. Phys Med Biol. 2015;60(11):4449-4464.10.1088/0031-9155/60/11/444925988839Search in Google Scholar

28. Sherck NJ, Won YY. Technical Note: A simulation study on the feasibility of radiotherapy dose enhancement with calcium tungstate and hafnium oxide nano- and microparticles. Med Phys. 2017;44:6583-6588.10.1002/mp.1258828921536Search in Google Scholar

29. Botchway SW, Coulter JA, Currell FJ. Imaging intracellular and systemic in vivo gold nanoparticles to enhance radiotherapy. Br J Radiol. 2015;881054):20150170.10.1259/bjr.20150170473096626118301Search in Google Scholar

30. Tsiamas P, Liu B, Cifter F, et al. Impact of beam quality on megavoltage radiotherapy treatment techniques utilizing gold nanoparticles for dose enhancement. Phys Med Biol. 2013;58(3):451-464.10.1088/0031-9155/58/3/45123302438Search in Google Scholar

31. Villagomez-Bernabe B, Currell FJ. Physical Radiation Enhancement Effects Around Clinically Relevant Clusters of Nanoagents in Biological Systems. Sci Rep. 2019;9:8156.10.1038/s41598-019-44482-y654481831148555Search in Google Scholar

32. Zangeneh M, Nedaei HA, Mozdarani H, et al. Enhanced cytotoxic and genotoxic effects of gadolinium-doped ZnO nanoparticles on irradiated lung cancer cells at megavoltage radiation energies. Mater Sci Eng C. 2019;103:109739.10.1016/j.msec.2019.10973931349426Search in Google Scholar

33. McMahon SJ, Hyland WB, Muir MF, et al. Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles. Sci Rep. 2011;1:18. doi:10.1038/srep00018.10.1038/srep00018321650622355537Search in Google Scholar

34. Jamil MZAM, Mohamed F, Rosli NRAM, et al. Effect of gamma irradiation on magnetic gadolinium oxide nanoparticles coated with chitosan (GdNPs-Cs) as contrast agent in magnetic resonance imaging. Radiat Phys Chem. 2019;165:108407.10.1016/j.radphyschem.2019.108407Search in Google Scholar

35. Douglass M, Bezak E, Penfold S. Monte Carlo investigation of the increased radiation deposition due to gold nanoparticles using kilovoltage and megavoltage photons in a 3D randomized cell model. Med.Phys. 2013;40(7):071710.Search in Google Scholar

eISSN:
1898-0309
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Biomedical Engineering, Physics, Technical and Applied Physics, Medical Physics