Open Access

Silver nanoparticles deposited on calcium hydrogenphosphate – silver phosphate matrix; biological activity of the composite


Cite

1. Li, W.R., Xie, X.B., Shi, Q.S., Zeng, H.Y., Ou-Yang, Y.S. & Chen, Y.B. (2010).Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl. Microbiol. Biotechnol. 85, 1115–1122. DOI: 10.1007/s00253-009-2159-5.10.1007/s00253-009-2159-5Open DOISearch in Google Scholar

2. Lubick, N. (2008). Nanosilver toxicity: ions, nanoparticles—or both? Environ. Sci. Technol. 42, 8617–8617. DOI: 10.1021/es8026314.10.1021/es8026314Open DOISearch in Google Scholar

3. Leung, B.O., Jalilehvand, F., Mah, V., Parvez, M. & Wu, Q. (2013). Silver(I) Complex Formation with Cysteine, Penicillamine, and Glutathione. Inorg. Chem. 52, 4593–4602. DOI: 10.1021/ic400192c.10.1021/ic400192cOpen DOISearch in Google Scholar

4. Aoki, K. & Saenger, W. (1983). Interactions of Biotin with Metal Ions. X-Ray Crystal Structure of the Polymeric Biotin-Silver(I) Nitrate Complex: Metal Bonding to Thioether and Ureido Carbonyl Groups. J. Inorg. Biochem. 19, 269–273. DOI: 10.1016/0162-0134(83)85031-4.10.1016/0162-0134(83)85031-4Open DOISearch in Google Scholar

5. Panzner, M.J., Bilinovich, S.M., Youngs, W.J. & Leeper, T.C. (2011). Silver metallation of hen egg white lysozyme: X-ray crystal structure and NMR studies. Chem. Commun. 47, 12479–12481. DOI: 10.1039/c1cc15908a.10.1039/c1cc15908a367718822042312Open DOISearch in Google Scholar

6. Highly dispersed AgNPs (10 nm diameter sized) are available in isopropyl alcohol, aqueous buffered solutions with sodium citrate stabilizer, or in polyvinylpyrrolidone (PVP) coat from worldwide chemicals distributors.Search in Google Scholar

7. Abou El-Nour, K.M.M., Eftaiha, A., Al-Warthan, A., Ammar, R.A.A. (2010). Synthesis and applications of silver nanoparticles. Arab. J. Chem. 3, 135–140. DOI: 10.1016/j.arabjc.2010.04.008.10.1016/j.arabjc.2010.04.008Open DOISearch in Google Scholar

8. Mulfinger, L., Solomon, S.D., Bahadory, M., Jeyarajasingam, A.V., Rutkowsky, S.A., Boritz, C. (2007). Synthesis and Study of Silver Nanoparticles. J. Chem. Educ. 84, 322–325. DOI: 10.1021/ed084p322.10.1021/ed084p322Search in Google Scholar

9. Liz-Marźan, L. & Lado-Touriňo, I. (1996) Reduction and stabilization of silver nanoparticles in ethanol by nonionic surfactants. Langmuir. 12, 35853–3589. DOI: 10.1021/la951501e.10.1021/la951501eSearch in Google Scholar

10. Radziuk, D., Skirtach, A., Sukhorukov, G., Shchukin, D. & Mohwald, H. (2007).Stabilization of silver nanoparticles by polyelectrolytes and poly(ethylene glycol). Macromol. Rapid Commun. 28, 848–855. DOI: 10.1002/marc.200600895.10.1002/marc.200600895Search in Google Scholar

11. Malina, D., Sobczak-Kupiec, A., Wzorek, Z. & Kowalski, Z. (2012). Silver nanoparticles with different concentrations of polyvinylpyrrolidone. Dig. J. Nanomat. Biostruct.7, 1527–1534.Search in Google Scholar

12. Huang, H. & Yang, X. (2004). Synthesis of polysaccharide-stabilized gold and silver nanoparticles: a green method. Carbohydr. Res. 339, 2627–2631. DOI: 10.1016/j.carres.2004.08.005.10.1016/j.carres.2004.08.00515476726Open DOISearch in Google Scholar

13. Shin, H.S., Yang, H.J., Kim, S.B. & Lee, M.S. (2004). Mechanism of growth of colloidal silver nanoparticles stabilized by polyvinyl pyrrolidone in γ-irradiated silver nitrate solution. J. Colloid Interface Sci. 274, 89–94. DOI: 10.1016/j.jcis.2004.02.08410.1016/j.jcis.2004.02.084Open DOISearch in Google Scholar

14. Hu, Y., Zhao, T., Zhu, P., Liang, X., Sun, R. & Wong, P.C. (2016). Tailoring size and coverage density of silver nanoparticles on monodispersed polymer spheres as highly sensitive SERS substrates. Chem. Asian J. 11, 2428–2435. DOI: 10.1002/asia.201600821.10.1002/asia.201600821Open DOISearch in Google Scholar

15. Supraja, N., Prasad, N.T.N.V.K.V. & David, E. (2016). Synthesis, characterization and antimicrobial activity of the micro/nano structured biogenic silver doped calcium phosphate. Appl. Nanosci. 6, 31–41. DOI: 10.1007/s13204-015-0409-7.10.1007/s13204-015-0409-7Open DOISearch in Google Scholar

16. Range, S., Hagmeyer, D., Rotan, O., Sokolova, V., Verheyen, J., Siebers, B. & Epple, M. (2015). A continuous method to prepare poorly crystalline silver-doped calcium phosphate ceramic with antibacterial properties. RSC Adv. 5, 43172. DOI: 10.1039/C5RA00401B.10.1039/C5RA00401BSearch in Google Scholar

17. Shin, Y.S., Park, M., Kim, H.K., Jin, F.L. & Park, S.J. (2014). Synthesis of Silver-doped Silica-complex Nanoparticles for Antibacterial Materials. Bull. Korean Chem. Soc. 35, 2979–2984. DOI: 10.5012/bkcs.2014.35.10.2979.10.5012/bkcs.2014.35.10.2979Open DOISearch in Google Scholar

18. Muniz-Miranda, M. (2003). Silver-doped silica colloidal nanoparticles. Characterization and optical measurements. Colloids Surf. A Physicochem. Eng. Asp. 217, 185–189. DOI: 10.1016/S0927-7757(02)00575-7.10.1016/S0927-7757(02)00575-7Open DOISearch in Google Scholar

19. Muzamil, M., Khalid, N., Aziz, M.D. & Abbas, S.A. (2014). Synthesis of silver nanoparticles by silver salt reduction and its characterization. IOP Conf. Ser: Mater Sci. Eng. 60, 1–8. DOI: 10.1088/1757-899X/60/1/012034.10.1088/1757-899X/60/1/012034Open DOISearch in Google Scholar

20. Pastoriza-Santos, I. & Liz-Marźan, L.M. (1999). Formation and stabilization of silver nanoparticles through reduction by N, N-dimethylformamide. Langmuir. 15, 948–951. DOI: 10.1021/la980984u.10.1021/la980984uOpen DOISearch in Google Scholar

21. Bykkam, S., Ahmadipour, M., Narisngam, S., Kalagadda, V.R. & Chidurala, S.C. (2015). Extensive studies on X-ray diffraction of green synthesized silver nanoparticles. Adv. Nanopart. 4, 1–10. DOI: 10.4236/anp.2015.41001.10.4236/anp.2015.41001Open DOISearch in Google Scholar

22. Socol, G., Socol, M., Sima, L., Petrescu, S., Enulescu, M., Sima, F., Miroiu, M., Popescu-Pelin, G., Stefan, N., Critescu, R., Mihailescu, C.N., Stanulescu, A., Sutan, C. & Mihailescu, I.N. (2012) Combinatorial pulsed laser deposition of Ag-containing calcium phosphate coatings. Dig. J. Nanomat. Biostruct. 7, 563–576.Search in Google Scholar

23. Rau, J., Fosca, M., Graziani, V., Egorov, A.A., Zobkov, Y.V., Fedotov, A.Y., Ortenzi, M., Caminiti, R., Baranchikov, A. & Komlev, V.S. (2016). Silver-doped calcium phosphate bone cements with antibacterial properties. J. Funct. Biomater. 7, 10; DOI: 10.3390/jfb7020010.10.3390/jfb7020010493246727096874Open DOISearch in Google Scholar

24. http://periodictable.com/Elements/047/data.htmlSearch in Google Scholar

25. Iconaru, L.S., Chapon, P., LeCoustumer, P. & Predoi, D. (2014). Antimicrobial Activity of Thin Solid Films of Silver Doped Hydroxyapatite Prepared by Sol-Gel Method. Scientific World J. 11, 165351. DOI: 10.1155/2014/165351.10.1155/2014/165351391349724523630Search in Google Scholar

26. Hardness of ZrO2 (zirconia) is considerably higher (1200 kg/mm2 or 11.8 GPa [26a] in comparison with calcium phosphates (2.7–4.9 GPa);Search in Google Scholar

26a; a: Grave, O.A. (2008). in Chapter 10, pp 169-193. Ceramic and glass materials. Structures, properties and processing. James F. Shackelford and Robert H. Doremus Eds. Springer Science+Business Media, LLC. DOI: 10.1007/978-0-387-73362-3.10.1007/978-0-387-73362-3Search in Google Scholar

26b: Slósarczyk, A. & Białoskórski, J. (1998). Hardness and fracture toughness of dense calcium–phosphate-based materials. J. Mat. Sci.: Materials in Medicine. 9, 103–108.Search in Google Scholar

27. Sekuła, J., Nizioł, J., Rode, W. & Ruman, T.S. (2015). Gold nanoparticle-enhanced target (AuNPET) as universal solution for laser desorption/ionization mass spectrometry analysis and imaging of low molecular weight compounds. Anal. Chim. Acta. 875, 61–72. DOI: 10.1016/j.aca.2015.01.046.10.1016/j.aca.2015.01.04625937107Open DOISearch in Google Scholar

28. Chow, L.C. & Eanes, E.D (2001).Solubility of Calcium Phosphates. in Octacalcium Phosphate. Monogr. Oral Sci. 13, 94–111. DOI: 10.1159/isbn.978-3-318-00704-6.10.1159/isbn.978-3-318-00704-6Open DOISearch in Google Scholar

29. Nizioł, J., Zieliński, Z., Rode, W. & Ruman, T. (2013). Matrix-free laser desorption-ionization with silver nanoparticle enhanced steel targets, Int. J. Mass Spectrom. 335, 22–32. DOI: 10.1016/j.ijms.2012.10.009.10.1016/j.ijms.2012.10.009Open DOISearch in Google Scholar

30. Jarvis, W.R. & Martone, W.J. (1992). Predominant pathogens in hospital infections. J. Antimicrob. Chemother. 29, 19–24. DOI: 10.1093/jac/29.suppl_A.19.10.1093/jac/29.suppl_A.191601752Open DOISearch in Google Scholar

31. Zhang, X., Gang, X., Wang, Y., Zhao, Y., Su, H. & Tan, T. (2017). Preparation of chitosan-TiO2 composite film with efficient antimicrobial activities under visible light for food packaging applications. Carbohydr. Polymer. 169, 101–107. DOI: 10.1016/j.carbpol.2017.03.073.10.1016/j.carbpol.2017.03.07328504125Open DOISearch in Google Scholar

32. Vila, L., Marcos, R. & Hernández, A. (2017). Long-term effects of silver nanoparticles in Caco-2 cells. Nanotoxicol. 11, 771–780. DOI: 10.1080/17435390.2017.1355997.10.1080/17435390.2017.135599728707555Open DOISearch in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering