Cite

1. Elser, P. & Maibach, H. (2000). Cosmeceuticals and Active Cosmetics. New York, USA: Taylor & Francis Group.Search in Google Scholar

2. Barel, M. & Paye, M. (2014). Handbook of Cosmetic Science and Technology, 4th ed. Boca Raton, USA: 2014. Taylor & Francis Group. pp. 353–365.10.1201/b16716Search in Google Scholar

3. Kiełtyka-Dadasiewicz, A. Sawicka, B. Bienia, B. & Krochmal-Marczak, B. (2014). Inulin as Product a Food, Feed, Pharmaceutical, Cosmetic and Energy. Polish J. Commodity Sci. 1, 18–26.Search in Google Scholar

4. Saengthongpinit, W. & Sajanantakul, T. (2005). Influence of harvest time and storage temperature on characteristics of inulin from Jerusalem artichoke (Helianthus tuberosus L.) tubers. Postharvest Biol. Technol. 37, 93–100. DOI: doi.org/10.1016/j.postharvbio.2005.03.004.10.1016/j.postharvbio.2005.03.004Open DOISearch in Google Scholar

5. Franck, A. (2002). Technological functionality of inulin and oligofructose. Br. L. Nutr. 87, 287–291. DOI: doi.org/10.1079/BJN/2002550.10.1079/BJN/2002550Open DOISearch in Google Scholar

6. Chyc, M. & Ogonowski, J. (2014). Jerusalem artichoke as a valuable raw materal, especially for food, pharmaceutical and cosmetics industries. Wiad. Chem. 68, 7–8.Search in Google Scholar

7. Sobolewska S., Grela E.R., & Skomiał J. (2012). Inulina i jej oddziaływanie u ludzi i zwierząt. In A. Czech & R. Klebaniuk (Eds.), The use of flax and inulin in nutrition and food production. Lublin, Poland: Stowarzyszenie Rozwoju Regionalnego i Lokalnego „Progress”, 65–88. (in Polish).Search in Google Scholar

8. Skiba, D. & Sawicka, B. (2016). Słonecznik bulwiasty (HelianthustuberosusL.) jako źródło substancji biologicznie czynnych o potencjale kosmetycznym. In A. Kiełtyka-Dadasiewicz (Eds.), Rośliny w nowoczesnej kosmetologii. Lublin, Poland: Wydawnictwo Akademickie Wyższej Szkoły Społeczno-Przyrodniczej w Lublinie, 65–76. (in Polish).Search in Google Scholar

9. Mutanda, T., Mokoena, M. P., Olaniran, O., Wilhelmi, B.S. & Whiteley, C.G. (2014). Microbial enzymatic production and applications of short-chain fructooligosaccharides and inulooligosaccharides: Recent advances and current perspectives. J. Ind. Microbiol. Biotechnol. 41, 893–906, DOI: 10.1007/s10295-014-1452-1.10.1007/s10295-014-1452-124793124Open DOISearch in Google Scholar

10. Vijin, I. & Smeekens, S. (1999). Fructan more than a reserve carbohydrate? Plant Physiol. 120, 351–359.10.1104/pp.120.2.351Search in Google Scholar

11. Anwar, M. A., Kralj, S., Van der Maarel, M. J. & Dijkhuizen, L. (2008). The probiotic Lactobacillus johnsonii NCC 533 produces high molecular-mass inulin from sucrose by using an inulosucrase enzyme. Appl. Environ. Microbiol. 74, 3426–3433, DOI: 10.1128/AEM.00377-08.10.1128/AEM.00377-08242302918408060Open DOISearch in Google Scholar

12. Bot, A., Erle, U., Vreeker, R. & Agterof, W.G.M. (2014). Influence of crystallization conditions on the large deformation rheology of inulin gels. Food Hydrocolloids. 18 (4), 547–556, DOI: 10.1016/j.foodhyd.2003.09.003.10.1016/j.foodhyd.2003.09.003Open DOISearch in Google Scholar

13. Lingyun, W., Jianhua, W., Xiaodong, Z., Da, T., Yalin, Y., Chenggang, C., Tianhua, F. & Fan, Z. (2007). Studies on the extracting technical conditions of inulin from Jerusalem artichoke tubers. J. Food Eng. 79, 1087–1093, DOI:doi.org/10.1016/j.jfoodeng.2006.03.028.10.1016/j.jfoodeng.2006.03.028Search in Google Scholar

14. Chi, Z.M., Zhang, T., Cao, T.S., Liu, X.Y., Cui, W. & Zhao, C.H. (2011). Biotechnological potential of inulin for bioprocesses. Bioresour. Technol. 102, 4295–4303, DOI: doi.org/10.1016/j.biortech.2010.12.086.10.1016/j.biortech.2010.12.08621247760Open DOISearch in Google Scholar

15. Rossi, M., Corradini, C., Amaretti, A., Nicolini, M., Pompei, A., Zanoni, S. & Matteuzzi, D. (2005). Fermentation of fructooligosaccharides and inulin by bifidobacteria: a comparative study of pure and fecal cultures. Appl. Environ. Microbiol. 71, 6150–6158, DOI: 10.1128/AEM.71.10.6150-6158.2005.10.1128/AEM.71.10.6150-6158.2005126594216204533Open DOISearch in Google Scholar

16. Roberfroid, M.B. (1998). Prebiotics and synbiotics: concepts and nutritional properties. Br. J. Nutr. 80, 197–202.10.1017/S0007114500006024Search in Google Scholar

17. Roberfroid, M.B., van Loo, J.A.E. & Gibson, G.R. (1998). The bifidogenic nature of chicory inulin and its hydrolysis products. J. Nutr. 128, 11–19.10.1093/jn/128.1.119430596Search in Google Scholar

18. Schroeder, G. (2010). Nanotechnologia, kosmetyki chemia supramolekularna. Kostrzyn, Poland: Publisher Cursiva.Search in Google Scholar

19. Brand-Williamis, W., Cuvelier, M. & Berset, C. (1995) Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 28, 25–30. DOI: 10.1016/S0023-6438(95)80008-5.10.1016/S0023-6438(95)80008-5Open DOISearch in Google Scholar

20. Re, R., Pellegrini, N., Protegente, A., Pannala, A., Yang, M. & Rice-Evans, C. (1999). Antioxidant activity applying and improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 1231–1237, DOI: 10.1016/S0891-5849(98)00315-3.10.1016/S0891-5849(98)00315-3Open DOISearch in Google Scholar

21. Bartosz, G. (2003). Total antioxidant capacity. Elsevier Science (USA).10.1016/S0065-2423(03)37010-6Search in Google Scholar

22. Draelos, Z.D. & Dover, J.S. (2011). Kosmeceutyki, 2nd ed. Wrocław, Poland: Elsevier Urban & Partner. 182–185.Search in Google Scholar

23. Bartosz, G. (2004). Druga twarz tlenu. Wolne rodniki w przyrodzie. Warszawa, Poland: Wydaw. Nauk. PWN. (in Polish)Search in Google Scholar

24. Lupo, M.P. (2001). Antioxidants and vitamins in cosmetics, Clin. Dermatol. 19 (4), 467–473.10.1016/S0738-081X(01)00188-2Search in Google Scholar

25. Katsube, T., Tabata, H., Ohta, Y., Yamasaki, Y., Anuurad, E., Shiwaku, K. & Yamane, Y. (2004). Screening for antioxidant activity in edible plant products: Comparison of low-density lipoprotein oxidation assay, DPPH radical scavenging assay and Folin-Ciocalteu assay. J. Agric. Food Chem. 52 (8), 2391–2396, DOI: 10.1021/jf035372g.10.1021/jf035372gSearch in Google Scholar

26. Potargowicz, E. & Szerszenowicz, E. (2006). Vegetal polyphenols in cosmetics, Pol. J. Cosmetol. 9 (2), 70–76.Search in Google Scholar

27. Linton, S., Davies, M.J. & Dean, R.T. (2001). Protein oxidation and ageing. Exp. Gerontol. 36 (9), 1503–1518.10.1016/S0531-5565(01)00136-XSearch in Google Scholar

28. Evans, M.D., Dizdaroglu, M. & Cooke, S. (2004). Oxidative DNA damage and disease: induction, repair and significance. Mutat. Res. 567 (1), 1–61, DOI: 10.1016/j.mrrev.2003.11.001.10.1016/j.mrrev.2003.11.001Open DOISearch in Google Scholar

29. Briganti, S. & Picardo, M. (2003). Antioxidant activity, lipid peroxidation and skin diseases. What’s new. J. Eur. Acad. Dermatol.Venereol. 17 (6), 663–669, DOI: 10.1046/j.1468--3083.2003.00751.x.10.1046/j.1468--3083.2003.00751.xOpen DOISearch in Google Scholar

30. Relhan, V., Gupta, S.K., Dayal, S., Pandey, R. & Lal, H. (2002). Blood thiols and malondialdehyde levels in psoriasis. J. Dermatol. 29 (7), 399–403, DOI: 10.1111/j.1346-8138.2002.tb00293.x.10.1111/j.1346-8138.2002.tb00293.xOpen DOISearch in Google Scholar

31. Jędrzejko, K. & Wolszczyk, W. (2006). Naturalne, krajowe zasoby surowców roślinnych o właściwościach kosmetycznych – możliwości ich wykorzystania w przemyśle kosmetycznym i obrocie międzynarodowym. Herba Polonica. 52 (3), 33–34. (in Polish).Search in Google Scholar

32. Mielczarek, C. & Brzezińska, E. (2000). Flavonoids in cosmetics and cosmetology. Part 1. Biological properties of flavonoids. Pol. J. Cosmetol. 1, 11–12.Search in Google Scholar

33. Kohlmünzer, S. (2013). Farmakognozja. Warszawa, Poland: Wydawnictwo Lekarskie PZWL. (in Polish).Search in Google Scholar

34. Kim,Y., Faqih, M.N. & Wang, S. (2001). Factors affecting gel formation of inulin. Carbohydrate Polimers. 46, 135–145, DOI: 10.1016/S0144-8617(00)00296-4.10.1016/S0144-8617(00)00296-4Open DOISearch in Google Scholar

35. Kim, K.H., Chung, C.B., Kim, Y.H., Kim, K.S., Han, C.S. & Kim, C.H. (2005). Cosmeceutical properties of levan produced by Zymomonasmobilis. J. Cosmet. Sci. 56, 395–406, DOI: 10.1111/j.1467-2494.2006.00314_2.x.10.1111/j.1467-2494.2006.00314_2.xOpen DOISearch in Google Scholar

36. Cieślik, E. & Gębusia, A. (2010). Topinambur (Helianthustuberosus L.) – bulwa o właściwościach prozdrowotnych. Postępy Nauk Rol. 3, 91–103. (in Polish).Search in Google Scholar

37. Liu, C., Wang, A. & Li, Y. (2010). Determination of antioxidation of polysaccharides in Tussilagofarfara. The Chinese J. Modern Appl. Pharmacy. 28(10), 886–889.Search in Google Scholar

38. Deneva, A., Petkova, N., Ivanov, I., Sirakov, B., Vrancheva, R. & Pavlova, A. (2014). Determination of biologically active substances in taproot of common chicory (Cichoriumintybus L.). Scientific Bulletin. Series F. Biotechnologies. 18, 124–129.Search in Google Scholar

39. O’Brien, J., Wilson, I., Orton, T. & Pognan, F. (2000). Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur. J. Biochem. 267, 5421–5426, DOI: 10.1046/j.1432-1327.2000.01606.x.10.1046/j.1432-1327.2000.01606.x10951200Open DOISearch in Google Scholar

40. Kwack, K. & Lynch, R.G. (2000). A New Non-radioactive Method for IL-2 Bioassay. Mol. Cells. 5, 575–578, DOI: 10.1007/s10059-000-0575-6.10.1007/s10059-000-0575-611101150Open DOISearch in Google Scholar

41. Bujak, T., Wasilewski, T. & Nizioł-Łukaszewska, Z. (2015). Role of macromolecules in the safety of use of body wash cosmetics. Colloids Surf. B. 1 (135), 497–503, DOI: 10.1016/j.colsurfb.2015.07.051.10.1016/j.colsurfb.2015.07.05126291586Open DOISearch in Google Scholar

42. Farn, R. J. (2006). Chemistry and Technology of Surfactants. Oxford, UK: Blackwell Publishing.10.1002/9780470988596Search in Google Scholar

43. Rosen, M.J. (2006). Surfactants and Interfacial Phenomena. 3rd ed. New York, USA: John Wiley& Sons.Search in Google Scholar

44. Abe, M. & Scamehorn, J.F. (2005). Mixed Surfactant Systems. 2nd ed. New York, USA: Marcel Dekker.Search in Google Scholar

45. Nielsen, G.D., Nielsen, J.B., Andersen, K.E. & Grandjean, P. (2000). Effect of industrial detergents on the barrier function of human skin. Int. J. Occup. Environ. Health. 6(2), 138–142, DOI: 10.1179/oeh.2000.6.2.138.10.1179/oeh.2000.6.2.13810828143Open DOISearch in Google Scholar

46. Faucher, J.A. & Goddard, E.D. (1978). Interaction of keratinous substrates with sodium lauryl sulfate. I. Sorption. J. Soc. Cosmet. Chem. 29, 323–337.Search in Google Scholar

47. Moore, P.N., Puvvada, S. & Blankschtein, D.J. (2003). Challenging the surfactant monomer skin penetration model: penetration of sodium dodecyl sulfate micelles into the epidermis. J. Cosmet. Sci. 54, 29–49.Search in Google Scholar

48. McFadden, J.P., Holloway, D.B., Whittle, E.G. & Basketter, D.A. (2000). Benzalkonium chloride neutralizes the irritant effect of sodium lauryl sulfate. Contact Dermatitis. 43, 264–266.10.1034/j.1600-0536.2000.043005264.x11016666Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering