Open Access

Carbon nanotubes with controlled length – preparation, characterization and their cytocompatibility effects


Cite

1. Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354, 56–58. DOI: 10.1038/354056a0.10.1038/354056a0Open DOISearch in Google Scholar

2. Donaldson, K., Aitken, R., Tran, L., Stone, V., Duffin, R., Forrest, G. & Alexander, A. (2006). Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol. Sci. 92, 5–22. DOI: 10.1093/toxsci/kfj130.10.1093/toxsci/kfj130Open DOISearch in Google Scholar

3. Chen, X., Chen, H., Tripisciano, C., Jedrzejewska, A., Rümmeli, H.M., Klingeler, R., Chu, P.K. & Borowiak-Palen, E. (2011). Carbon-nanotube-based stimuli-responsive controlled-release system. Chem. Eur. J. 17, 4454–4459. DOI: 10.1002/chem.201003355.10.1002/chem.201003355Open DOISearch in Google Scholar

4. Kumar, A.P., Hul, Y., Yamamoto, Y., Hoe, N.B., Wie, T.S., Mu, D., Sun, Y., Joo, L.S., Dagher, R., Zielonka, L.M., Wang, D.Y., Lim, B., Chow, V. T., Crum, C. P., Xian, W. & McKeon, F. (2011). Distal airway s tem cells yield alveoli in v itro a nd during lung regeneration following H1N1 influenza infection. Cell, 147, 525–538. DOI: 10.1016/j.cell.2011.10.001.10.1016/j.cell.2011.10.001Open DOISearch in Google Scholar

5. Meng, L., Zhang, X., Lu, Q., Fei, Z. & Dyson, P.J. (2012). Single walled carbon nanotubes as drug delivery vehicles: targeting doxorubicin to tumors. Biomaterials, 33, 1689–1698. DOI: 10.1016/j.biomaterials.2011.11.004.10.1016/j.biomaterials.2011.11.004Open DOISearch in Google Scholar

6. Lacerda, L., Bianco, A., Prato, M. & Kostarelos, K. (2006). Carbon nanotubes as nanomedicines: from toxicology to pharmacology. Adv. Drug Delivery Rev. 58, 1460–1470. DOI: 10.1016/j.addr.2006.09.015.10.1016/j.addr.2006.09.015Open DOISearch in Google Scholar

7. Lam, C.W., James, J.T., McCluskey, R., Arepalli, S. & Hunter, R.L. (2006). A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Rev. Toxicol. 36, 189–217. DOI: 10.1080/10408440600570233.10.1080/10408440600570233Open DOISearch in Google Scholar

8. Markovic, M.Z., Harhaji-Trajkovic, L.M., Todorovic--Markovic, B.M., Kepić, D.P., Arsikin, K.M., Jovanović, S.P., Pantovic, A.C., Dramićanin, M.D. & Trajkovic, V.S. (2011). In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes. Biomaterials, 32, 1121–1129. DOI: 10.1016/j.biomaterials.2010.10.030.10.1016/j.biomaterials.2010.10.030Search in Google Scholar

9. Sahithi, K., Swetha, M., Ramasamy, K., Srinivasan, N. & Selvamurugan, N. (2010). Polymeric composites containing carbon nanotubes for bone tissue engineering. Int. J. Biol. Macromol. 46, 281–283. DOI: 10.1016/j.ijbiomac.2010.01.006.10.1016/j.ijbiomac.2010.01.006Open DOISearch in Google Scholar

10. Elgrabli, D., Abella-Gallart, S., Robidel, F., Rogerieux, F., Boczkowski, J. & Lacroix, G. (2008). Induction of apoptosis and absence of inflammation in rat lung after intratracheal instillation of multiwalled carbon nanotubes. Toxicology, 253, 131–136. DOI: 10.1016/j.tox.2008.09.004.10.1016/j.tox.2008.09.004Search in Google Scholar

11. De Nicola, M., Gattia, D.M., Bellucci, S., Bellis, G.D., Micciulla, F., Pastore, R., Tiberia, A., Cerella, C., D’Alessio, M., Antisari, M.V., Marazzi, R., Traversa, E., Magrini, A., Bergamaschi, A. & Ghibelli, L. (2007). Effect of different carbon nanotubes on cell viability and proliferation. J. Phys: Condens. Matter. 19, 395013–395020. DOI: 10.1088/0953-8984/19/39/395013.10.1088/0953-8984/19/39/395013Open DOISearch in Google Scholar

12. Cui, D., Tian, F.C.S., Wang, M. & Gao, H. (2005). Effect of single-wall carbon nanotubes on human HEK293 cells. Toxicol. Lett. 155, 73–85. DOI: 10.1016/j.toxlet.2004.08.015.10.1016/j.toxlet.2004.08.015Open DOISearch in Google Scholar

13. Suh, W.H., Suslick, K.S., Stucky, G.D. & Suh, Y.H. (2009). Nanotechnology, nanotoxicology, and neuroscience. Prog. Neurobiol. 87, 133–170. DOI: 10.1016/j.pneurobio.2008.09.009.10.1016/j.pneurobio.2008.09.009Open DOISearch in Google Scholar

14. Wang, X., Podila, R., Shannahan, J.H., Rao, A.M. & Brown, J.M. (2011). Intravenously delivered graphene nano-sheets and multiwalled carbon nanotubes induce site-specific Th2 inflammatory responses via the IL-33/ST2 axis. Chem. Res. Toxicol. 24, 2028–2039. DOI: 10.2147/IJN.S44211.10.2147/IJN.S44211Open DOISearch in Google Scholar

15. Bekyarova, E., Haddon, R.C. & Parpura, V. (2007). Biofunctionalization of carbon nanotubes. NTLS. DOI:10.1002/9783527610419.ntls0002.10.1002/9783527610419.ntls0002Open DOISearch in Google Scholar

16. Kagan, V.E., Konduru, N.V., Feng, W., Allen, B.L., Conroy, J., Volkov, Y., Vlasova, I.I., Belikova, N.A., Yanamala, N., Kapralov, A., Tyurina, Y.Y., Shi, J., Kisin, E.R., Murray, A.R., Franks, J., Stolz, D., Gou, P., Klein-Seetharaman, J., Fadeel, B., Star, A. & Shvedova, A.A. (2010). Carbon nano-tubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nature Nanotech. 5, 354–359. DOI: 10.1038/nnano.2010.44.10.1038/nnano.2010.44Open DOISearch in Google Scholar

17. Li, J.Z. & Zhang, Y.F. (2006). Cutting of multi walled carbon nanotubes. Appl. Surf. Sci. 252, 2944–2948. DOI: 10.1016/j.apsusc.2005.04.039.10.1016/j.apsusc.2005.04.039Open DOISearch in Google Scholar

18. Peng, J., Qu, X.X., Wei, G.S., Li, J.Q. & Qiao, J.L. (2004). The cutting of MWNTs using gamma radiation in the presence of dilute sulfuric acid. Carbon, 42, 2741–2744. DOI: 10.1016/j.carbon.2004.05.015.10.1016/j.carbon.2004.05.015Open DOISearch in Google Scholar

19. Gu, Z., Peng, H., Hauge, R.H., Smalley, R.E. & Mar-grave, J.L. (2002). Cutting single-wall carbon nanotubes through fluorination. Nano Lett. 2, 1009–1013. DOI: 10.1021/nl025675+.10.1021/nl025675+Open DOISearch in Google Scholar

20. Wang, X.X., Wang, J.N., Su, L.F. & Niu, J.J. (2006). Cutting of multi-walled carbon nanotubes by solid-state reaction. J. Mater. Chem. 16, 4231–4234. DOI: 10.1039/B609231D.10.1039/B609231Open DOISearch in Google Scholar

21. Pierard, N., Fonseca, A., Konya, Z., Willems, I., Tendeloo, G.V. & Nagy, J.B. (2001). Production of short carbon nanotubes with open tips by ball milling. Chem. Phys. Lett. 335, 1–8. DOI: 10.1016/S0009-2614(01)00004-5.10.1016/S0009-2614(01)00004-5Open DOISearch in Google Scholar

22. Konya, Z., Vesselenyi, I., Niesz, K., Kukovecz, A., Demortier, A., Fonseca, A., Delhalle, J., Mekhalif, Z., Nagy, J.B., Koos, A.A., Osváth, Z., Kocsonya, A., Biró, L.P. & Kiricsi, I. (2002). Large scale production of short functionalized carbon nanotubes. Chem. Phys. Lett. 360, 429–435. DOI: 10.1016/S0009-2614(02)00900-4.10.1016/S0009-2614(02)00900-4Open DOISearch in Google Scholar

23. Kukovecz, K., Kanyo, T., Konya, Z. & Kiricsi, I. (2005). Long-time low impact ball milling of multi-wall carbon nano-tubes. Carbon, 43, 994–1000. DOI: 10.1016/j.carbon.2004.11.030.10.1016/j.carbon.2004.11.030Open DOISearch in Google Scholar

24. Koshio, A., Yudasaka, M., Zhang, M. & Iijima, S. (2001). A simple way to chemically react single-wall carbon nanotubes with organic materials using ultrasonication. Nano Lett. 1, 361–363. DOI: 10.1021/nl0155431.10.1021/nl0155431Open DOISearch in Google Scholar

25. Shimada, T., Yanase, H., Morishita, K., Hayashi, J.I. & Chiba, T. (2004). Points of onset of gasification in a multi-walled carbon nanotube having an imperfect structure. Carbon, 42, 1635–1639. DOI: 10.1016/j.carbon.2004.02.019.10.1016/j.carbon.2004.02.019Open DOISearch in Google Scholar

26. Li, Q.W., Yan, H., Ye, Y.C., Zhang, J. & Liu, Z.F. (2002). Defect location of individual single-walled carbon nanotubes with a thermal oxidation strategy. J. Phys. Chem. B. 106, 11085–8. DOI: 10.1021/jp026512c.10.1021/jp026512cSearch in Google Scholar

27. Kirk, J., Ziegler, K.J., Gu, Z., Shaver, J., Chen, Z., Flor, E.L., Schmidt, D.J., Chan, C., Hauge, R.H. & Smalley, R.E. (2005). Cutting single-walled carbon nanotubes. Nanotechnology, 16: S539–S544. DOI: 10.1088/0957-4484/16/7/031.10.1088/0957-4484/16/7/031Open DOISearch in Google Scholar

28. Wang, C., Guo, S., Pan, X., Chen, W. & Bao, X. (2008). Tailored cutting of carbon nanotubes and controlled dispersion of metal nanoparticles inside their channels. J. Mater. Chem. 18, 5782–5786. DOI: 10.1039/B811560E.10.1039/B811560Open DOISearch in Google Scholar

29. Hennrich, F., Krupke, R., Arnold, K., Stu1tz, J.A.R., Lebedkin, S., Koch, T., Schimmel, T. & Kappes, M.M. (2007). The mechanism of cavitations-induced scission of single-walled carbon nanotubes. J. Phys. Chem. B. 111, 1932-1937. DOI: 10.1021/jp065262n.10.1021/jp065262nOpen DOISearch in Google Scholar

30. Cheng, Q., Debnath, S., Gregan, E. & Byrne, H.J. (2010). Ultrasound-assisted SWNTs dispersion: effects of sonication parameters and solvent properties. J. Phys. Chem. C. 114, 8821-8827. DOI: 10.1021/jp101431h.10.1021/jp101431hOpen DOISearch in Google Scholar

31. Nagai, H., Okazaki, Y., Chew, S.H., Misawa, N., Yamashita, Y., Akatsuka, S., Ishihara, T., Yamashita, K., Yoshikawa, Y., Yasui, H., Jiang, L., Ohara, H., Takahashi, T., Ichihara, G., Kostarelos, K., Miyata, Y., Shinohara, H. & Toyokuni, S. (2011). Diameter and rigidity of multiwalled carbon nanotubes are critical factors in mesothelial injury and carcinogenesis. Proc. Natl. Acad. Sci. USA 108, E1330–E1338. DOI: 10.1073/pnas.1110013108.10.1073/pnas.1110013108Open DOISearch in Google Scholar

32. Sohaebuddin, S.K., Thevenot, P.T., Baker, D., Eaton, J.W. & Tang, L. (2010). Nanomaterial cytotoxicity is composition, size and cell type dependent. Part Fibre Toxicol. 7, 22. DOI: 10.1186/1743-8977-7-22.10.1186/1743-8977-7-22Open DOISearch in Google Scholar

33. Stern, S.T., Adiseshaiah, P.P. & Crist, R.M. (2012). Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterials toxicity. Part Fibre Toxicol. 9, 20. DOI: 10.1186/1743-8977-9-20.10.1186/1743-8977-9-20Open DOISearch in Google Scholar

34. Gratton, S.E., Rapp, P.A., Pohlhaus, P.D., Luft, J.C., Madden, V.J., Napier, M.E. & DeSimone, J.M. (2008). The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. USA 105, 11613–11618. doi: 10.1073/pnas.0801763105.10.1073/pnas.0801763105Open DOISearch in Google Scholar

35. Fraczek-Szczypta, A., Menaszek, E. & Blazewicz, S. (2011). Some observations on carbon nanotubes susceptibility to cell phagocytosis. J. Nanomater. 473516–473524. DOI: org/10.1155/2011/473516.10.1155/2011/473516Open DOISearch in Google Scholar

36. Wick, P., Manser, P., Limbach, L.K., Dettlaff-Weglikowska, U., Krumeich, F., Roth, S., Stark, W.J. & Bruinink, A. (2007). The degree and kind of agglom eration affect carbon n anotube cytotoxicity. Toxicol. Lett. 168, 121–131. DOI: 10.1016/j.toxlet.2006.08.019.10.1016/j.toxlet.2006.08.019Open DOISearch in Google Scholar

37. Fotakis, G. & Timbrell, J.A. (2006). In vitro cytotoxicity assays: Comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lies following exposure to cadmium chloride. Toxicol. Lett. 160, 171–177. DOI: 10.1016/j.toxlet.2005.07.001.10.1016/j.toxlet.2005.07.001Open DOISearch in Google Scholar

38. Davoren, M., Herzog, E., Casey, A., Cottineau, B. & Chambers, G. (2007). In vitro toxicity evaluation of single walled carbon nanotubes on human A549 lung cells. Toxicol. In Vitro. 21, 438–448. DOI: 10.1016/j.tiv.2006.10.007.10.1016/j.tiv.2006.10.007Open DOISearch in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering