Open Access

Histopathological evaluation of polycaprolactone nanocomposite compared with tricalcium phosphate in bone healing


Cite

Abedalwafa M., Wang F., Wang L., Li C.: Biodegradable poly-epsilon-caprolactone (PCL) for tissue engineering applications: a review. Rev Adv Mater Sci 2013, 34, 123–140.AbedalwafaM.WangF.WangL.LiC.Biodegradable poly-epsilon-caprolactone (PCL) for tissue engineering applications: a reviewRev Adv Mater Sci201334123140Search in Google Scholar

Ahmed I., Parsons A.J., Palmer G., Knowles J.C., Walker G.S., Rudd C.D.: Weight loss, ion release and initial mechanical properties of a binary calcium phosphate glass fibre/PCL composite. Acta Biomater 2008, 4, 1307–1314.AhmedI.ParsonsA.J.PalmerG.KnowlesJ.C.WalkerG.S.RuddC.D.Weight loss, ion release and initial mechanical properties of a binary calcium phosphate glass fibre/PCL compositeActa Biomater200841307131410.1016/j.actbio.2008.03.018Search in Google Scholar

Aminzare M., Amir E., Abbasi Z., Hassanzad Azare H., Hashemi M.: Evaluation of in vitro antioxidant characteristics of corn starch bioactive films impregnated with Bunium persicum and Zataria multiflora essential oils. Annual Res Rev Biol 2017, 15, 1–9.AminzareM.AmirE.AbbasiZ.HassanzadAzare H.HashemiM.Evaluation of in vitro antioxidant characteristics of corn starch bioactive films impregnated with Bunium persicum and Zataria multiflora essential oilsAnnual Res Rev Biol2017151910.9734/ARRB/2017/35155Search in Google Scholar

Asti A., Gioglio L.: Natural and synthetic biodegradable polymers: different scaffolds for cell expansion and tissue formation. Int J Artif Organs 2014, 37, 187–205.AstiA.GioglioL.Natural and synthetic biodegradable polymers: different scaffolds for cell expansion and tissue formationInt J Artif Organs20143718720510.5301/ijao.5000307Search in Google Scholar

Azi M.L., Aprato A., Santi I., Junior M.J., Masse A., Joeris A.: Autologous bone graft in the treatment of post-traumatic bone defects: a systematic review and meta-analysis. BMC Musculoskeletal Disorders 2016, 17, 465–475.AziM.L.ApratoA.SantiI.JuniorM.J.MasseA.JoerisA.Autologous bone graft in the treatment of post-traumatic bone defects: a systematic review and meta-analysisBMC Musculoskeletal Disorders20161746547510.1186/s12891-016-1312-4Search in Google Scholar

Bae J.H., Song H.R., Kim H.J., Lim H.C., Park J.H., Liu Y., Teoh S.H.: Discontinuous release of bone morphogenetic protein-2 loaded within interconnected pores of honeycomb-like polycaprolactone scaffold promotes bone healing in a large bone defect of rabbit ulna. Tissue Eng 2011, 19, 2389–2397.BaeJ.H.SongH.R.KimH.J.LimH.C.ParkJ.H.LiuY.TeohS.H.Discontinuous release of bone morphogenetic protein-2 loaded within interconnected pores of honeycomb-like polycaprolactone scaffold promotes bone healing in a large bone defect of rabbit ulnaTissue Eng2011192389239710.1089/ten.tea.2011.0032Search in Google Scholar

Bahareh Azimi B., Nourpanah P., Rabiee M., Arbab S.H.: Poly (ε-caprolactone) Fiber: an overview. J Eng Fibers Fabrics 2014, 9, 74–90.BaharehAzimi B.NourpanahP.RabieeM.ArbabS.H.Poly (ε-caprolactone) Fiber: an overviewJ Eng Fibers Fabrics20149749010.1177/155892501400900309Search in Google Scholar

Basu P., Sharan B.S., Kumar U.N., Manjubala I.: Polymer ceramic composite for bone regeneration application. Int J Chem Tech Res 2014, 16, 4038–4041.BasuP.SharanB.S.KumarU.N.ManjubalaI.Polymer ceramic composite for bone regeneration applicationInt J Chem Tech Res20141640384041Search in Google Scholar

Burg K.J.L., Porter S., Kellam J.F.: Biomaterial developments for bone tissue engineering. Biomaterials 2000, 21, 2347–2359.BurgK.J.L.PorterS.KellamJ.F.Biomaterial developments for bone tissue engineeringBiomaterials2000212347235910.1016/S0142-9612(00)00102-2Search in Google Scholar

Ciapetti G., Ambrosio L., Savarino L., Granchi D., Cenni E., Baldini N., Pagani S., Guizzardi S., Causa F., Giunti A.: Osteoblast growth and function in porous poly epsilon - caprolactone matrices for bone repair: a preliminary study. Biomaterials 2003, 24, 3815–3824.CiapettiG.AmbrosioL.SavarinoL.GranchiD.CenniE.BaldiniN.PaganiS.GuizzardiS.CausaF.GiuntiA.Osteoblast growth and function in porous poly epsilon - caprolactone matrices for bone repair: a preliminary studyBiomaterials2003243815382410.1016/S0142-9612(03)00263-1Search in Google Scholar

Diba M., Kharaziha M., Fathi M.H., Gholipourmalekabadi M., Samadikuchaksaraei A.: Preparation and characterization of polycaprolactone/forsterite nanocomposite porous scaffolds designed for bone tissue regeneration. Comp Sci Technol 2012, 72, 716–723.DibaM.KharazihaM.FathiM.H.GholipourmalekabadiM.SamadikuchaksaraeiA.Preparation and characterization of polycaprolactone/forsterite nanocomposite porous scaffolds designed for bone tissue regenerationComp Sci Technol20127271672310.1016/j.compscitech.2012.01.023Search in Google Scholar

Di Liddo R., Paganin P., Lora S., Dalzoppo D., Giraudo C., Miotto D., Tasso A., Barbon S., Artico M., Bianchi E., Parnigotto P.P., Conconi M.T., Grandi C.: Poly-ε-caprolactone composite scaffolds for bone repair. Int J Mol Med 2014, 34, 1537–1546.DiLiddo R.PaganinP.LoraS.DalzoppoD.GiraudoC.MiottoD.TassoA.BarbonS.ArticoM.BianchiE.ParnigottoP.P.ConconiM.T.GrandiC.Poly-ε-caprolactone composite scaffolds for bone repairInt J Mol Med2014341537154610.3892/ijmm.2014.195425319350Search in Google Scholar

Eftekhari H., Jahandideh A.R., Asghari A., Akbarzadeh A., Hesaraki S.: Assessment of polycaprolacton (PCL) nanocomposite scaffold compared with hydroxyapatite (HA) on healing of segmental femur bone defect in rabbits. Artif Cells Nanomed Biotechnol 2016, 30, 1–8.EftekhariH.JahandidehA.R.AsghariA.AkbarzadehA.HesarakiS.Assessment of polycaprolacton (PCL) nanocomposite scaffold compared with hydroxyapatite (HA) on healing of segmental femur bone defect in rabbitsArtif Cells Nanomed Biotechnol2016301810.1080/21691401.2016.119836027356956Search in Google Scholar

Erisken C., Kalyon D.M., Wang H.: Functionally graded electrospun polycaprolactone and beta-tricalcium phosphate nanocomposites for tissue engineering applications. Biomaterials 2008, 29, 4065–4073.EriskenC.KalyonD.M.WangH.Functionally graded electrospun polycaprolactone and beta-tricalcium phosphate nanocomposites for tissue engineering applicationsBiomaterials2008294065407310.1016/j.biomaterials.2008.06.02218649939Search in Google Scholar

Grandi C., Di Liddo R., Paganin P., Lora S., Dalzoppo D., Feltrin G., Giraudo C., Tommasini M., Conconi M.T., Parnigotto P.P.: Porous alginate/poly (ε-caprolactone) scaffolds: preparation, characterization and in vitro biological activity. Int J Mol Med 2016, 27, 455–467.GrandiC.DiLiddo R.PaganinP.LoraS.DalzoppoD.FeltrinG.GiraudoC.TommasiniM.ConconiM.T.ParnigottoP.P.Porous alginate/poly (ε-caprolactone) scaffolds: preparation, characterization and in vitro biological activityInt J Mol Med20162745546710.3892/ijmm.2010.59321206967Search in Google Scholar

Hench L.: Bioceramics: from concept to clinic. J Am Ceram Soc 1991, 74, 1487–1510.HenchL.Bioceramics: from concept to clinicJ Am Ceram Soc1991741487151010.1111/j.1151-2916.1991.tb07132.xSearch in Google Scholar

Komaki H., Tanaka T., Chazono M., Kikuchi T.: Repair of segmental bone defects in rabbit tibiae using a complex of β-tricalcium phosphate, type I collagen, and fibroblast growth factor-2. Biomaterials 2006, 27, 5118–5126.KomakiH.TanakaT.ChazonoM.KikuchiT.Repair of segmental bone defects in rabbit tibiae using a complex of β-tricalcium phosphate, type I collagen, and fibroblast growth factor-2Biomaterials2006275118512610.1016/j.biomaterials.2006.05.03116769112Search in Google Scholar

Lee J.Y., Son S.J., Son J.S., Kang S.S., Choi S.H.: Bone-healing capacity of PCL/PLGA/duck beak scaffold in critical bone defects in a rabbit model. Biomed Res Int 2016, ID 2136215, 1–10.LeeJ.Y.SonS.J.SonJ.S.KangS.S.ChoiS.H.Bone-healing capacity of PCL/PLGA/duck beak scaffold in critical bone defects in a rabbit modelBiomed Res Int2016ID 213621511010.1155/2016/2136215479458327042660Search in Google Scholar

Lei B., Shin K.H., Noh D.Y., Koh Y.H., Choi W.Y., Kim H.E.: Bioactive glass microspheres as reinforcement for improving the mechanical properties and biological performance of poly (ε-caprolactone) polymer for bone tissue regeneration. J Biomed Mater Res B Appl Biomater 2012, 100, 967–975.LeiB.ShinK.H.NohD.Y.KohY.H.ChoiW.Y.KimH.E.Bioactive glass microspheres as reinforcement for improving the mechanical properties and biological performance of poly (ε-caprolactone) polymer for bone tissue regenerationJ Biomed Mater Res B Appl Biomater201210096797510.1002/jbm.b.3265922279025Search in Google Scholar

Mohammadi H., Hafezi M., Nezafati N., Hesaraki S., Nadernezhad A., Ghazanfari S.M.H., Sepantafar M.: Bioinorganics in bioactive calcium silicate ceramics for bone tissue repair: bioactivity and biological properties. J Ceram Sci Technol 2014, 5, 1–12.MohammadiH.HafeziM.NezafatiN.HesarakiS.NadernezhadA.GhazanfariS.M.H.SepantafarM.Bioinorganics in bioactive calcium silicate ceramics for bone tissue repair: bioactivity and biological propertiesJ Ceram Sci Technol20145112Search in Google Scholar

Murphy C., Kolan K., Li W., Semon J., Day D., Leu M.: 3D bioprinting of stem cells and polymer/bioactive glass composite scaffolds for bone tissue engineering. Int J Bioprint 2017, 3, 1–11.MurphyC.KolanK.LiW.SemonJ.DayD.LeuM.3D bioprinting of stem cells and polymer/bioactive glass composite scaffolds for bone tissue engineeringInt J Bioprint2017311110.18063/IJB.2017.01.005757563433094180Search in Google Scholar

Ogose A., Hotta T., Hatano H., Kawashima H., Tokunaga K., Endo N.: Histological examination of beta-tricalcium phosphate graft in human femur. J Biomed Mater Res 2002, 63, 601–604.OgoseA.HottaT.HatanoH.KawashimaH.TokunagaK.EndoN.Histological examination of beta-tricalcium phosphate graft in human femurJ Biomed Mater Res20026360160410.1002/jbm.1038012209906Search in Google Scholar

Rezaei A., Mohammadi M.R.: In vitro study of hydroxyapatite/polycaprolactone (HA/PCL) nanocomposite synthesized by an in situ sol-gel process. Mater Sci Eng C Mater Biol Appl 2013, 33, 390–396.RezaeiA.MohammadiM.R.In vitro study of hydroxyapatite/polycaprolactone (HA/PCL) nanocomposite synthesized by an in situ sol-gel processMater Sci Eng C Mater Biol Appl20133339039610.1016/j.msec.2012.09.00425428086Search in Google Scholar

Roohani-Esfahani S.I, Lu Z.F., Li J.J., Ellis-Behnke R., Kaplan D.L., Zreiqat H.: Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds. Acta Biomater 2013, 8, 302–312.Roohani-EsfahaniS.ILuZ.F.LiJ.J.Ellis-BehnkeR.KaplanD.L.ZreiqatH.Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffoldsActa Biomater2013830231210.1016/j.actbio.2011.10.00922023750Search in Google Scholar

Verrier S., Alini M., Alsberg E., Buchman S.R., Kelly D., Laschke M.W., Menger M.D., Murphy W.L., Stegemann J.P., Schütz M., Miclau T., Stoddart M.J., Evans C.: Tissue engineering and regenerative approaches to improving the healing of large bone defects. Eur Cells Mat 2016, 32, 87–110.VerrierS.AliniM.AlsbergE.BuchmanS.R.KellyD.LaschkeM.W.MengerM.D.MurphyW.L.StegemannJ.P.SchützM.MiclauT.StoddartM.J.EvansC.Tissue engineering and regenerative approaches to improving the healing of large bone defectsEur Cells Mat2016328711010.22203/eCM.v032a0627434267Search in Google Scholar

Vikingsson L., Sancho-Tello M., Ruiz-Saurí A., Martínez Díaz S., Gómez-Tejedor J.A., Gallego Ferrer G., Carda C., Monllau J.C., Gómez Ribelles J.L.: Implantation of a polycaprolactone scaffold with subchondral bone anchoring ameliorates nodules formation and other tissue alterations. Int J Artif Organs 2015, 38, 659–666.VikingssonL.Sancho-TelloM.Ruiz-SauríA.MartínezDíaz S.Gómez-TejedorJ.A.GallegoFerrer G.CardaC.MonllauJ.C.GómezRibelles J.L.Implantation of a polycaprolactone scaffold with subchondral bone anchoring ameliorates nodules formation and other tissue alterationsInt J Artif Organs20153865966610.5301/ijao.500045726797871Search in Google Scholar

Woodruff M.A., Hutmacher D.A.: The return of a forgotten polymer–polycaprolactone in the 21st century. Prog Polym Sci 2010, 35, 1217–1256.WoodruffM.A.HutmacherD.A.The return of a forgotten polymer–polycaprolactone in the 21st centuryProg Polym Sci2010351217125610.1016/j.progpolymsci.2010.04.002Search in Google Scholar

Wu F., Liu C., O’Neill B., Wei J., Ngothai Y.: Fabrication and properties of porous scaffold of magnesium phosphate/ polycaprolactone biocomposite for bone tissue engineering. Appl Surf Sci 2012, 258, 7589–7595.WuF.LiuC.O’NeillB.WeiJ.NgothaiY.Fabrication and properties of porous scaffold of magnesium phosphate/ polycaprolactone biocomposite for bone tissue engineeringAppl Surf Sci20122587589759510.1016/j.apsusc.2012.04.094Search in Google Scholar

Yu H., Wooley P., Yang S.Y.: Biocompatibility of poly-ε-caprolactone hydroxyapatite composite on mouse bone marrow-derived osteoblasts and endothelial cells. J Orthop Surg Res 2009, 4, 5.YuH.WooleyP.YangS.Y.Biocompatibility of poly-ε-caprolactone hydroxyapatite composite on mouse bone marrow-derived osteoblasts and endothelial cellsJ Orthop Surg Res20094510.1186/1749-799X-4-5265442919243637Search in Google Scholar

Živadinović M., Andrić M., Milošević V., Manojlović-Stojanoski M., Prokić B., Prokić B., Dimić A., Ćalasan D., Brković B.: Histomorphometric evaluation of bone regeneration using autogenous bone and beta-tricalcium phosphate in diabetic rabbits. Vojnosanit Pregl 2016, 73, 1132–1138.ŽivadinovićM.AndrićM.MiloševićV.Manojlović-StojanoskiM.ProkićB.ProkićB.DimićA.ĆalasanD.BrkovićB.Histomorphometric evaluation of bone regeneration using autogenous bone and beta-tricalcium phosphate in diabetic rabbitsVojnosanit Pregl2016731132113810.2298/VSP151125013Z29341570Search in Google Scholar

eISSN:
2450-8608
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Molecular Biology, Microbiology and Virology, other, Medicine, Veterinary Medicine