Open Access

Effect of the Biostimulants of Microbiological Origin on the Entomopathogenic and Plant Parasitic Nematodes from Miscanthus × Giganteus Plantations


Cite

Alasmary Z., Todd T., Hettiarachchi G.M., Stefanovska T., Pidlisnyuk V., Roozeboom K. et al. 2020. Effect of soil treatments and amendments on the nematode community under Miscanthus growing in a lead contaminated military site. Agronomy 10(11); 1727; 18 p. DOI: 10.3390/agronomy10111727. Search in Google Scholar

Arndt C., Diao X., Dorosh P., Pauw K., Thurlow J. 2023. The Ukraine war and rising commodity prices: Implications for developing countries. Global Food Security 36; 100680; 9 p. DOI: 10.1016/j.gfs.2023.100680. Search in Google Scholar

Arundale R.A., Dohleman F.G., Heaton E.A., McGrath J.M., Voigt T.B., Long S.P. 2014. Yields of Miscanthus × giganteus and Panicum virgatum decline with stand age in the Midwestern USA. GCB Bioenergy 6(1): 1–13. DOI: 10.1111/gcbb.12077. Search in Google Scholar

Birah A., Chilana P., Shukla U.K., Gupta G.P. 2008. Mass rearing of greater wax moth (Galleria mellonella L.) on artificial diet. Indian Journal of Entomology 70(4): 389–392. Search in Google Scholar

Blyuss K.B., Fatehi F., Tsygankova V.A., Biliavska L.O., Iutynska G.O., Yemets A.I., Blume Y.B. 2019. RNAi-based biocontrol of wheat nematodes using natural poly-component biostimulants. Frontiers in Plant Science 10 483. DOI: 10.3389/fpls.2019.00483. Search in Google Scholar

Caradonia F., Ronga D., Tava A., Francia E. 2022. Plant biostimulants in sustainable potato production: an overview. Potato Research 65(1): 83–104. DOI: 10.1007/s11540-021-09510-3. Search in Google Scholar

Certificate No.21-1652-01-01 2023-01-31. 2021. Production and processing standard for use in organic agriculture (based on the equivalent EU organic production and processing standard for third countries). Search in Google Scholar

Danielewicz D., Dybka-Stępień K., Surma-Ślusarska B. 2018. Processing of Miscanthus × giganteus stalks into various soda and kraft pulps. Part I: Chemical composition, types of cells and pulping effects. Cellulose 25(11): 6731–6744. DOI: 10.1007/s10570-018-2023-9. Search in Google Scholar

El-Sayed M.M., Olfat E.A., Hegab M.A.M., Awad S.E. 2022. Joint actions between entomopathogenic nematodes and abamectin for controlling the termites, Psammotermes hypostoma (Desn.), and Anacanthotermes ochraceus (Burm.). Egyptian Academic Journal of Biological Sciences, F. Toxicology and Pest Control 14(1): 9–22. DOI: 10.21608/eajbsf.2022.212785. Search in Google Scholar

Emery S.M., Reid M.L., Bell-Dereske L., Gross K.L. 2017. Soil mycorrhizal and nematode diversity vary in response to bioenergy crop identity and fertilization. GCB Bioenergy 9(11): 1644–1656. DOI: 10.1111/gcbb.12460. Search in Google Scholar

Falko N., Zhukov O. 2023. Transition from hierarchy to adhocratic organizational culture in a Ukrainian university: From survival to successful development in the conditions of war. Problems and Perspectives in Management 21(2): 15–22. DOI: 10.21511/ppm.21(2-si).2023.03. Search in Google Scholar

Felten D., Emmerling C. 2012. Accumulation of Miscanthus‐derived carbon in soils in relation to soil depth and duration of land use under commercial farming conditions. Journal of Plant Nutrition and Soil Science 175(5): 661–670. DOI: 10.1002/jpln.201100250. Search in Google Scholar

Fetoh B.E.-S.A., Khaled A.S., El-Nagar T.F.K. 2009. Combined effect of entomopathogenic nematodes and biopesticides to control the greasy cut worm, Agrotis ipsilion (Hufn.) in the strawberry fields. Egyptian Academic Journal of Biological Sciences, A. Entomology 2(1): 227–236. DOI: 10.21608/eajbsa.2009.15718. Search in Google Scholar

Fitzgerald J. 2004. Laboratory bioassays and field evaluation of insecticides for the control of Anthonomus rubi, Lygus rugulipennis and Chaetosiphon fragaefolii, and effects on beneficial species, in UK strawberry production. Crop Protection 23(9): 801–809. DOI: 10.1016/j.cropro.2003.12.005. Search in Google Scholar

Fritsche U., Brunori G., Chiaramonti D., Galanakis C., Matthews R., Panoutsou C. 2021. Future transitions for the bioeconomy towards sustainable development and a climate-neutral economy – Foresight scenarios for the EU bioeconomy in 2050. Publications Office of the European Union. DOI: 10.2760 /763277. Search in Google Scholar

Hendriksen N.B. 2022. Microbial biostimulants – the need for clarification in EU regulation. Trends in Microbiology 30(4): 311–313. DOI: 10.1016/j.tim.2022.01.008. Search in Google Scholar

Hunt D.J., Luc M., Manzanilla-López R.H. 2005. Identification, morphology and biology of plant parasitic nematodes. In: Luc M., Sikora R.A., Bridge J. (Eds.), Plant parasitic nematodes in subtropical and tropical agriculture, 2 ed. CABI, pp. 11–52. DOI: 10.1079/9780851997278.0011. Search in Google Scholar

Kary N.E., Sanatipour Z., Mohammadi D., Dillon A.B. 2021. Combination effects of entomopathogenic nematodes, Heterorhabditis bacteriophora and Steinernema feltiae, with abamectin on developmental stages of Phthorimaea operculella (Lepidoptera, Gelechiidae). Crop Protection 143; 105543; 10 p. DOI: 10.1016/j.cropro.2021.105543. Search in Google Scholar

Kaya H.K., Stock S.P. 1997. Techniques in insect nematology. In: Lacey L.A. (Ed.), Manual of techniques in insect pathology. Academic Press, pp. 281–324. DOI: 10.1016/b978-012432555-5/50016-6. Search in Google Scholar

Kharytonov M., Pidlisnyuk V., Stefanovska T., Babenko M., Martynova N., Rula I. 2019. The estimation of Miscanthus × giganteus’ adaptive potential for cultivation on the mining and post-mining lands in Ukraine. Environmental Science and Pollution Research 26: 2974–2986. DOI: 10.1007/s11356-018-3741-0. Search in Google Scholar

Koppenhöfer A.M., Shapiro-Ilan D.I., Hiltpold I. 2020. Entomopathogenic nematodes in sustainable food production. Frontiers in Sustainable Food Systems 4; 125; 14 p. DOI: 10.3389/fsufs.2020.00125. Search in Google Scholar

Kort J. 1960. A technique for the extraction of Heterodera cysts from wet soil and for the estimation of their egg and larval content. Verslagen en Mededeelingen, Plantenziektenkundige Dienst, Wageningen. Netherlands, 233(6): 3–7. Search in Google Scholar

Laznik Ž., Trdan S. 2014. The influence of insecticides on the viability of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) under laboratory conditions. Pest Management Science 70(5): 784–789. DOI: 10.1002/ps.3614. Search in Google Scholar

Lewandowski I., Clifton-Brown J.C., Scurlock J.M.O., Huisman W. 2000. Miscanthus: European experience with a novel energy crop. Biomass and Bioenergy 19(4): 209–227. DOI: 10.1016/S0961-9534(00)00032-5. Search in Google Scholar

Lumaret J.-P., Errouissi F., Floate K., Römbke J., Wardhaugh K. 2012. A review on the toxicity and non-target effects of macrocyclic lactones in terrestrial and aquatic environments. Current Pharmaceutical Biotechnology 13(6): 1004–1060. DOI: 10.2174/138920112800399257. Search in Google Scholar

Medkov A.I., Stefanovska T.R., Borodai V.V. 2021. Optimization of the micromycete cultivation process – basics of growth regulators and biotesting their growth-stimulating activity concerning to Miscanthus giganteus. Agrology 4(1): 40–46. DOI: 10.32819/021005. Search in Google Scholar

Meena R.S., Kumar S., Datta R., Lal R., Vijayakumar V., Brtnicky M. et al. 2020. Impact of agrochemicals on soil microbiota and management: A review. Land 9(2); 34; 21 p. DOI: 10.3390/land9020034. Search in Google Scholar

Nebeská D., Pidlisnyuk V., Stefanovska T., Trögl J., Shapoval P., Popelka J. et al. 2019. Impact of plant growth regulators and soil properties on Miscanthus × giganteus biomass parameters and uptake of metals in military soils. Reviews on Environmental Health 34(3): 283–291. DOI: 10.1515/reveh-2018-0088. Search in Google Scholar

Nurzhanova A.A., Pidlisnyuk V., Berzhanova R., Nurmagambetova A.S., Terletskaya N., Omirbekova N. et al. 2023. PGPR-driven phytoremediation and physio-biochemical response of Miscanthus × giganteus to stress induced by the trace elements. Environmental Science and Pollution Research 30(42): 96098–96113. DOI: 10.1007/s11356-023-29031-5. Search in Google Scholar

Pereira P., Bašić F., Bogunovic I., Barcelo D. 2022. Russian-Ukrainian war impacts the total environment. Science of the Total Environment 837; 155865. DOI: 10.1016/j.scitotenv.2022.155865. Search in Google Scholar

Pidlisnyuk V., Shapoval P., Zgorelec Ž., Stefanovska T., Zhukov O. 2020. Multiyear phytoremediation and dynamic of foliar metal(loid)s concentration during application of Miscanthus × giganteus Greef et Deu to polluted soil from Bakar, Croatia. Environmental Science and Pollution Research 27(25): 31446–31457. DOI: 10.1007/s11356-020-09344-5. Search in Google Scholar

Pidlisnyuk V., Stefanovska T., Zhukov O., Medkow A., Shapoval P., Stadnik V., Sozanskyi M. 2022. Impact of plant growth regulators to development of the second generation energy crop Miscanthus × giganteus produced two years in marginal post-military soil. Applied Sciences 12(2); 881; 14 p. DOI: 10.3390/app12020881. Search in Google Scholar

R Core Team 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org Search in Google Scholar

Seesao Y., Gay M., Merlin S., Viscogliosi E., Aliouat-Denis C.M., Audebert C. 2017. A review of methods for nematode identification. Journal of Micro-biological Methods 138: 37–49. DOI: 10.1016/j.mimet.2016.05.030. Search in Google Scholar

Seinhorst J.W. 1966. Killing nematodes for taxonomic study with hot f.a. 4:1. Nematologica 12(1): 178–178a. DOI: 10.1163/187529266x00239. Search in Google Scholar

Stefanovska T., Luckhart S., Ripa L., Stevens G., Lewis E. 2023. Steinernema carpocapsae. Trends in Parasitology 39(5): 400–401. DOI: 10.1016/j.pt.2023.01.002. Search in Google Scholar

Stefanovska T., Skwiercz A., Pidlisnyuk V., Zhukov O., Kozacki D., Mamirova A. et al. 2022. The short-term effects of amendments on nematode communities and diversity patterns under the cultivation of Miscanthus × giganteus on marginal land. Agronomy 12(9); 2063; 18 p. DOI: 10.3390/agronomy12092063. Search in Google Scholar

Stefanovska T., Skwiercz A., Zouhar M., Pidlisnyuk V., Zhukov O. 2021. Plant-feeding nematodes associated with Miscanthus × giganteus and their use as potential indicators of the plantations’ state. International Journal of Environmental Science and Technology 18(1): 57–72. DOI: 10.1007/s13762-020-02865-z. Search in Google Scholar

Subbotin S.A., Yan G., Kantor M., Handoo Z. 2020. On the molecular identity of Paratylenchus nanus Cobb, 1923 (Nematoda: Tylenchida). Journal of Nematology 52(1); 127; 7 p. DOI: 10.21307/jofnem-2020-127. Search in Google Scholar

Technical conditions of Ukraine. 2014. 20.2-31168762-006:2012 Plant Grow Regulator “Regoplant” CSM (5). Manufacturer’s specification. Search in Google Scholar

Technical conditions of Ukraine. 2016. 24.2-03563790-041-2001 Plant Grow Regulator “Charkor” CSM (5). Manufacturer’s specification. Search in Google Scholar

Technical conditions of Ukraine. 2020. 20.2-31168762-005:2012 Plant Grow Regulator “Stimpo” CSM (5). Manufacturer’s specification. Search in Google Scholar

Tsygankova V.A., Andrusevich Y.V., Babayants O.V., Ponomarenko S.P., Medkov A.I., Galkin A.P. 2013. Increase of plant immune protection against pathogenic fungi, wreckers and nematodes by growth regulators. Physiology and Biochemistry of Cultivated Plants 45(2): 138–147. [in Ukrainian with English abstract] Search in Google Scholar

Tsygankova V.A., Stefanovska T.R., Galkin A.P., Ponomarenko S.P., Blume Y.B. 2012. Inducing effect of PGRs on small regulatory si/miRNA in resistance to sugar beet cyst nematode. Communications in Agricultural and Applied Biological Sciences 77(4): 779–787. Search in Google Scholar

Wang X.-J., Wang M., Wang J.-D., Jiang L., Wang J.-J., Xiang W.-S. 2010. Isolation and identification of novel macrocyclic lactones from Streptomyces aver-mitilis NEAU1069 with acaricidal and nematocidal activity. Journal of Agricultural and Food Chemistry 58(5): 2710–2714. DOI: 10.1021/jf902496d. Search in Google Scholar

White G.F. 1927. A method for obtaining infective nematode larvae from cultures. Science 66(1709): 302–303. DOI: 10.1126/science.66.1709.302.b. Search in Google Scholar

Yan A., Wang Y., Tan S.N., Mohd Yusof M.L., Ghosh S., Chen Z. 2020. Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Frontiers in Plant Science 11; 359; 15 p. DOI: 10.3389/fpls.2020.00359 Search in Google Scholar

eISSN:
2353-3978
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, Biotechnology, Plant Science, Ecology, other