Open Access

Applications of bioimpedance measurement techniques in tissue engineering


Cite

Langer R, Vacanti JP. Advances in tissue engineering. J Pediatr Surg. 2016;51(1):8-12. https://doi.org/10.1016/j.jpedsurg.2015.10.022LangerRVacantiJPAdvances in tissue engineeringJ Pediatr Surg2016511812https://doi.org/10.1016/j.jpedsurg.2015.10.02210.1016/j.jpedsurg.2015.10.022473391626711689Search in Google Scholar

Dzobo K. Advances in Regenerative Medicine and Tissue Engineering: Innovation and Transformation of Medicine: A Review Article. Stem Cells International. 2018. https://doi.org/10.1155/2018/2495848DzoboKAdvances in Regenerative Medicine and Tissue Engineering: Innovation and Transformation of Medicine: A Review ArticleStem Cells International2018https://doi.org/10.1155/2018/249584810.1155/2018/2495848609133630154861Search in Google Scholar

Shafiee A, Atala A. Tissue Engineering: Toward a New Era of Medicine. Annu Rev Med. 2017;68:29-40. https://doi.org/10.1146/annurev-med-102715-092331ShafieeAAtalaATissue Engineering: Toward a New Era of MedicineAnnu Rev Med2017682940https://doi.org/10.1146/annurev-med-102715-09233110.1146/annurev-med-102715-09233127732788Search in Google Scholar

Tabata Y. Biomaterial technology for tissue engineering applications. J R Soc Interface. 2009;6(S311). https://doi.org/10.1098/rsif.2008.0448.focusTabataYBiomaterial technology for tissue engineering applicationsJ R Soc Interface20096S311https://doi.org/10.1098/rsif.2008.0448.focus10.1098/rsif.2008.0448.focus269009219324684Search in Google Scholar

Appel AA, Anastasio MA, Larson JC, Brey EM. Imaging challenges in biomaterials and tissue engineering. Biomaterials. 2013;34(28):6615-30. https://doi.org/10.1016/j.biomaterials.2013.05.033AppelAAAnastasioMALarsonJCBreyEMImaging challenges in biomaterials and tissue engineeringBiomaterials20133428661530https://doi.org/10.1016/j.biomaterials.2013.05.03310.1016/j.biomaterials.2013.05.033379990423768903Search in Google Scholar

Nam SY, Suggs LJ, Emelianov SY. Imaging strategies for tissue engineerig applications. Tissue Engineering. 2015;21(1).NamSYSuggsLJEmelianovSYImaging strategies for tissue engineerig applicationsTissue Engineering201521110.1089/ten.teb.2014.0180Search in Google Scholar

Grimnes S, Martinsen ØG. Bioimpedance & Bioelectricity Basics. 3rd ed: Elsevier Science; 2014.GrimnesSMartinsenØGBioimpedance & Bioelectricity Basics3rd edElsevier Science201410.1016/B978-0-12-411470-8.00011-8Search in Google Scholar

Pethig R, Kell DB. The passive electrical properties of biological systems: Their significance in physiology, biophysics and biotechnology. Phys Med Biol. 1987;32(933). https://doi.org/10.1088/0031-9155/32/8/001PethigRKellDBThe passive electrical properties of biological systems: Their significance in physiology, biophysics and biotechnologyPhys Med Biol198732933https://doi.org/10.1088/0031-9155/32/8/00110.1088/0031-9155/32/8/0013306721Search in Google Scholar

Miklavcic D, Pavselj N, Hart FX. Electric Properties of Tissues. Wiley Encyclopedia of Biomedical Engineering. 2006.MiklavcicDPavseljNHartFXElectric Properties of TissuesWiley Encyclopedia of Biomedical Engineering200610.1002/9780471740360.ebs0403Search in Google Scholar

Schwan HP. Electrical properties of tissue and cell suspensions: Mechanisms and models. Proc IEEE Adv Biol Med Soc. 2002;1:A70-A1.SchwanHPElectrical properties of tissue and cell suspensions: Mechanisms and modelsProc IEEE Adv Biol Med Soc20021A70A110.1109/IEMBS.1994.412155Search in Google Scholar

Kyle UG, Bosaeus I, De Lorenzo AD. Bioelectrical impedance analysis part I: review of principles and methods. Clinical Nutrition. 2004;23:1226-43. https://doi.org/10.1016/j.clnu.2004.06.004KyleUGBosaeusIDeLorenzo ADBioelectrical impedance analysis part I: review of principles and methodsClinical Nutrition200423122643https://doi.org/10.1016/j.clnu.2004.06.00410.1016/j.clnu.2004.06.004Search in Google Scholar

Alberts B, Johnson A, Lewis J. Transport into the cell from the plasma membrane: Endocytosis. Molecular Biology of the Cell. 4th ed: Garland Science; 2002.AlbertsBJohnsonALewisJTransport into the cell from the plasma membrane: Endocytosis. Molecular Biology of the Cell. 4th edGarland Science2002Search in Google Scholar

Asami K. Characterization of heterogeneous systems by dielectric spectroscopy. Prog Polym Sci. 2002;27:1617-59. https://doi.org/10.1016/S0079-670002)00015-1AsamiKCharacterization of heterogeneous systems by dielectric spectroscopyProg Polym Sci200227161759https://doi.org/10.1016/S0079-670002)00015-110.1016/S0079-6700(02)00015-1Search in Google Scholar

Heileman K, Daoud J, Tabrizian M. Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis. Biosens Bioelectron. 2013;49:348-59. https://doi.org/10.1016/j.bios.2013.04.017HeilemanKDaoudJTabrizianMDielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysisBiosens Bioelectron20134934859https://doi.org/10.1016/j.bios.2013.04.01710.1016/j.bios.2013.04.01723796534Search in Google Scholar

Riu PJ. Comments on "Bioelectrical parameters of the whole human body obtained through bioelectrical impedance analysis". Bioelectromagnetics. 2004;25:69-71. https://doi.org/10.1002/bem.10190RiuPJComments on "Bioelectrical parameters of the whole human body obtained through bioelectrical impedance analysis"Bioelectromagnetics2004256971https://doi.org/10.1002/bem.1019010.1002/bem.1019014696056Search in Google Scholar

Gabriel C, Gabriel S, Corthout E. The dielectric properties of biological tissues: I. Literature survey. Phys Med Biol. 1996;41:2231-49. https://doi.org/10.1088/0031-9155/41/11/001GabrielCGabrielSCorthoutEThe dielectric properties of biological tissues: I. Literature surveyPhys Med Biol199641223149https://doi.org/10.1088/0031-9155/41/11/00110.1088/0031-9155/41/11/0018938024Search in Google Scholar

Martinsen ØG, Grimnes S, Schwan HP. Interface phenomena and dielectric properties of biological tissue. Encyclopedia of Surface and Colloid Science. 2002;20:2643-53.MartinsenØGGrimnesSSchwanHPInterface phenomena and dielectric properties of biological tissueEncyclopedia of Surface and Colloid Science200220264353Search in Google Scholar

Dean DA, Ramanathan T, Machado D, Sundararajan R. Electrical Impedance Spectroscopy Study of Biological Tissues. J Electrostat. 2008;66(3-4):165-77. https://doi.org/10.1016/j.elstat.2007.11.005DeanDARamanathanTMachadoDSundararajanRElectrical Impedance Spectroscopy Study of Biological TissuesJ Electrostat2008663-416577https://doi.org/10.1016/j.elstat.2007.11.00510.1109/CEIDP.2006.311943Search in Google Scholar

Kwon H, McEwan AL, Oh TI, Farooq A, Woo EJ, Seo JK. A local region of interest imaging method for electrical impedance tomography with internal electrodes. Comput Math Methods Med. 2013;9. https://doi.org/10.1155/2013/964918KwonHMcEwanALOhTIFarooqAWooEJSeoJKA local region of interest imaging method for electrical impedance tomography with internal electrodesComput Math Methods Med20139https://doi.org/10.1155/2013/96491810.1155/2013/964918372284323935705Search in Google Scholar

Seo JK, Bera TK, Kwon H, Sadleir RJ. Effective Admittivity of Biological Tissues as a Coefficient of Elliptic PDE. Computational and Mathematical Methods in Medicine. 2013;2. https://doi.org/10.1155/2013/353849SeoJKBeraTKKwonHSadleirRJEffective Admittivity of Biological Tissues as a Coefficient of Elliptic PDEComputational and Mathematical Methods in Medicine20132https://doi.org/10.1155/2013/35384910.1155/2013/353849365462723710251Search in Google Scholar

Schwan HP. Electrical properties of tissues and cell suspensions Advanced Phys Med Biol. 1957;5:147-209.SchwanHPElectrical properties of tissues and cell suspensions Advanced Phys Med Biol1957514720910.1016/B978-1-4832-3111-2.50008-013520431Search in Google Scholar

El Khaled D, Castellano NN, Gazquez JA, Perea-Moreno A-J. Dielectric Spectroscopy in Biomaterials: Agrophysics. A Review. Materials. 2016;9(310). https://doi.org/10.3390/ma9050310ElKhaled DCastellanoNNGazquezJAPerea-MorenoA-JDielectric Spectroscopy in Biomaterials: Agrophysics. A ReviewMaterials20169310https://doi.org/10.3390/ma905031010.3390/ma9050310550304928773438Search in Google Scholar

Zajicek R, Oppl L, Vrba J. Broadband Measurement of Complex Permittivity Using Reflection Method and Coaxial Probes Radioengineering. 2008;17(1).ZajicekROpplLVrbaJBroadband Measurement of Complex Permittivity Using Reflection Method and Coaxial Probes Radioengineering2008171Search in Google Scholar

Vorlicek J, Oppl L, Vrba J, editors. Measurement of Complex Permittivity of Biological Tissues. Progress In Electromagnetics Research Symposium Proceeding; 2010; Cambridge, USA.VorlicekJOpplLVrbaJMeasurement of Complex Permittivity of Biological Tissues. Progress In Electromagnetics Research Symposium Proceeding2010Cambridge, USASearch in Google Scholar

Foster KR, Schwan HP. Dielectric properties of tissues and biological materials: a critical review. Critical Reviews in Biomedical Engineering. 1989;17(1):25-104.FosterKRSchwanHPDielectric properties of tissues and biological materials: a critical reviewCritical Reviews in Biomedical Engineering198917125104Search in Google Scholar

Markx GH. The use of electric fields in tissue engineering. A review. Organogenesis. 2008;4(1):11-7. https://doi.org/10.4161/org.5799MarkxGHThe use of electric fields in tissue engineeringA review. Organogenesis200841117https://doi.org/10.4161/org.5799Search in Google Scholar

Pliquett U, Prausnitz MR. Electrical impedance spectroscopy for rapid and non-invasive analysis of skin electroporation. In: Electrically Mediated Delivery of Molecules to Cells, Electrochemotherapy, Electrogenetherapy and Transdermal Delivery by Electroporation Totowa, NJ: Humana Press; 2000. https://doi.org/10.1385/1-59259-080-2377PliquettUPrausnitzMRElectrical impedance spectroscopy for rapid and non-invasive analysis of skin electroporationElectrically Mediated Delivery of Molecules to Cells, Electrochemotherapy, Electrogenetherapy and Transdermal Delivery by Electroporation TotowaNJHumana Press2000https://doi.org/10.1385/1-59259-080-2377Search in Google Scholar

Ducommun P, Kadouri A, Von Stockar U, Marison I. On-line determination of animal cell concentration in two industrial high-density culture processes by dielectric spectroscopy. Biotechnol Bioeng. 2002;77:316-23. https://doi.org/10.1002/bit.1197DucommunPKadouriAVonStockar UMarisonIOn-line determination of animal cell concentration in two industrial high-density culture processes by dielectric spectroscopyBiotechnol Bioeng20027731623https://doi.org/10.1002/bit.119710.1002/bit.119711753940Search in Google Scholar

Justice C, Brix A, Freimark D, Kraume M, Pfromm P, Eichenmueller B. Process control in cell culture technology using dielectric spectroscopy. . Biotechnol. 2011;29:391-401. https://doi.org/10.1016/j.biotechadv.2011.03.002JusticeCBrixAFreimarkDKraumeMPfrommPEichenmuellerBProcess control in cell culture technology using dielectric spectroscopyBiotechnol201129391401https://doi.org/10.1016/j.biotechadv.2011.03.00210.1016/j.biotechadv.2011.03.00221419837Search in Google Scholar

Hildebrandt C, Büth H, Cho S, Thielecke H. Detection of the osteogenic differentiation of mesenchymal stem cells in 2D and 3D cultures by electrochemical impedance spectroscopy. J Biotechnol. 2010;148(1):83-90. https://doi.org/10.1016/j.jbiotec.2010.01.007HildebrandtCBüthHChoSThieleckeHDetection of the osteogenic differentiation of mesenchymal stem cells in 2D and 3D cultures by electrochemical impedance spectroscopyJ Biotechnol201014818390https://doi.org/10.1016/j.jbiotec.2010.01.00710.1016/j.jbiotec.2010.01.00720085793Search in Google Scholar

Wu H, Zhou W, Yang Y, Jia J, Bagnaninchi P. Exploring the Potential of Electrical Impedance Tomography for Tissue Engineering Applications. Materials. 2018;11(6):31. https://doi.org/10.3390/ma11060930WuHZhouWYangYJiaJBagnaninchiPExploring the Potential of Electrical Impedance Tomography for Tissue Engineering ApplicationsMaterials201811631https://doi.org/10.3390/ma1106093010.3390/ma11060930602524429857521Search in Google Scholar

Khalil SF, Mohktar MS, Ibrahim F. The Theory and Fundamentals of Bioimpedance Analysis in Clinical Status Monitoring and Diagnosis of Diseases. A Review. Sensors. 2014;14.KhalilSFMohktarMSIbrahimFThe Theory and Fundamentals of Bioimpedance Analysis in Clinical Status Monitoring and Diagnosis of DiseasesA Review. Sensors20141410.3390/s140610895411836224949644Search in Google Scholar

Canali C, Heiskanen A, Martinsen ØG, Mohanty S, Dufva M, Wolff A, Emneus J. Impedance-Based Monitoring for Tissue Engineering Applications. In: Simini F, Pedro BF. editor. II Latin American Conference on Bioimpedance. IFMBE Proceedings. 54. New York: Springer; 2016. p. 36-9. https://doi.org/10.1007/978-981-287-928-8-10CanaliCHeiskanenAMartinsenØGMohantySDufvaMWolffAEmneusJImpedance-Based Monitoring for Tissue Engineering ApplicationsSiminiFPedroBFeditor. II Latin American Conference on Bioimpedance. IFMBE Proceedings. 54New YorkSpringer2016369https://doi.org/10.1007/978-981-287-928-8-1010.1007/978-981-287-928-8_10Search in Google Scholar

Yúfera A, Rueda A. A Method for Bioimpedance Measure With Four- and Two-Electrode Sensor Systems. 30th Annual International IEEE EMBS Conference Vancouver, British Columbia, Canada; 2008. https://doi.org/10.1109/IEMBS.2008.4649662YúferaARuedaAA Method for Bioimpedance Measure With Four- and Two-Electrode Sensor Systems. 30th Annual International IEEE EMBS Conference VancouverBritish Columbia, Canada2008https://doi.org/10.1109/IEMBS.2008.464966210.1109/IEMBS.2008.464966219163165Search in Google Scholar

Carvalho TS, Fonseca AL, Coutinho ABB, Jotta B, Pino AV, Souza MN. Comparison of bipolar and tetrapolar techniques in bioimpedance measurement. XXIV Congresso Brasileiro de Engenharia Biomédica – CBEB; 2014.CarvalhoTSFonsecaALCoutinhoABBJottaBPinoAVSouzaMNComparison of bipolar and tetrapolar techniques in bioimpedance measurementXXIV Congresso Brasileiro de Engenharia Biomédica – CBEB;2014Search in Google Scholar

Bragos R, Sarro E, Fontova A, Soley A, Cairo J, Bayes-Genis A, et al. Four versus two-electrode measurement strategies for cell growing and differentiation monitoring using electrical impedance spectroscopy. Annual International Conference of the IEEE Engineering in Medicine & Biology Society. 2006;1:2106-9. https://doi.org/10.1109/IEMBS.2006.260287BragosRSarroEFontovaASoleyACairoJBayes-GenisAet alFour versus two-electrode measurement strategies for cell growing and differentiation monitoring using electrical impedance spectroscopyAnnual International Conference of the IEEE Engineering in Medicine & Biology Society2006121069https://doi.org/10.1109/IEMBS.2006.26028710.1109/IEMBS.2006.26028717946497Search in Google Scholar

Sarro E, Fontova A, Soley A, Cairo J, Bayes-Genis A, Rosell J, et al. Four electrode EIS measurement on interdigitated microelectrodes for adherent cell growing and differentiation monitoring. In: Scharfetter H, Merwa R, editors. 13th International Conference on Electrical Bioimpedance and the 8th Conference on Electrical Impedance Tomography 2007. IFMBE Proceedings. 17. New York: Springer; 2007. p. 77. https://doi.org/10.1007/978-3-540-73841-1-23SarroEFontovaASoleyACairoJBayes-GenisARosellJet alFour electrode EIS measurement on interdigitated microelectrodes for adherent cell growing and differentiation monitoringScharfetterHMerwaR13th International Conference on Electrical Bioimpedance and the 8th Conference on Electrical Impedance Tomography 2007IFMBE Proceedings17New YorkSpringer200777https://doi.org/10.1007/978-3-540-73841-1-2310.1007/978-3-540-73841-1_23Search in Google Scholar

Kalvøy H, Frich L, Grimnes S, Martinsen ØG. Impedance-based tissue discrimination for needle guidance. Physiological Measurements. 2009;30.KalvøyHFrichLGrimnesSMartinsenØGImpedance-based tissue discrimination for needle guidancePhysiological Measurements20093010.1088/0967-3334/30/2/00219136732Search in Google Scholar

Radke SM, Alocilja EC. Design and Fabrication of a Microimpedance Biosensor for Bacterial Detection. IEEE Sensor Journal. 2004;4:434-40. https://doi.org/10.1109/JSEN.2004.830300RadkeSMAlociljaECDesign and Fabrication of a Microimpedance Biosensor for Bacterial DetectionIEEE Sensor Journal2004443440https://doi.org/10.1109/JSEN.2004.83030010.1109/JSEN.2004.830300Search in Google Scholar

Giaever I. Use of Electric Fields to Monitor the Dynamical Aspect of Cell Behaviour in Tissue Cultures. IEEE Transaction on Biomedical Engineering. 1986; BME 33:242-7. https://doi.org/10.1109/TBME.1986.325896GiaeverIUse of Electric Fields to Monitor the Dynamical Aspect of Cell Behaviour in Tissue CulturesIEEE Transaction on Biomedical Engineering1986BME332427https://doi.org/10.1109/TBME.1986.32589610.1109/TBME.1986.3258963957373Search in Google Scholar

Linderholm P, Bertsch A, Renaud P. Resistivity probing of multi-layered tissue phantoms using microelectrodes. Physiol Meas. 2004;25:645-58. https://doi.org/10.1088/0967-3334/25/3/005LinderholmPBertschARenaudPResistivity probing of multi-layered tissue phantoms using microelectrodesPhysiol Meas20042564558https://doi.org/10.1088/0967-3334/25/3/00510.1088/0967-3334/25/3/00515253116Search in Google Scholar

Huang X. Simulation of Microelectrode Impedance Changes Due to Cell Growth. IEEE Sensors Journal. 2004;4:576-83. https://doi.org/10.1109/JSEN.2004.831302HuangXSimulation of Microelectrode Impedance Changes Due to Cell GrowthIEEE Sensors Journal2004457683https://doi.org/10.1109/JSEN.2004.83130210.1109/JSEN.2004.831302Search in Google Scholar

Canali C, Mohanty S, Heiskanen A. Impedance Spectroscopic Characterisation of Porosity in 3D Cell Culture Scaffolds with Different Channel Networks. Electroanalysis. 2015;27(1):193-9. https://doi.org/10.1002/elan.201400413CanaliCMohantySHeiskanenAImpedance Spectroscopic Characterisation of Porosity in 3D Cell Culture Scaffolds with Different Channel NetworksElectroanalysis20152711939https://doi.org/10.1002/elan.20140041310.1002/elan.201400413Search in Google Scholar

Ragheb T, Geddes LA. The Polarization Impedance of Common Electrode Metals Operated at Low Current Density Annals of Biomedical Engineering. 1991;19:151-63.RaghebTGeddesLAThe Polarization Impedance of Common Electrode Metals Operated at Low Current Density Annals of Biomedical Engineering1991191516310.1007/BF023684662048774Search in Google Scholar

Geddes LA, Roeder R. Criteria for the selection of materials for implanted electrodes. Annals of Biomedical Engineering. 2003;31(7):879-90. https://doi.org/10.1114/1.1581292GeddesLARoederRCriteria for the selection of materials for implanted electrodesAnnals of Biomedical Engineering200331787990https://doi.org/10.1114/1.158129210.1114/1.158129212971619Search in Google Scholar

Holder D. Electrical Impedance Tomography: Methods, History and Applications. Bristol: Institute of Physics Publishing; 2005.HolderDElectrical Impedance Tomography: Methods, History and ApplicationsBristolInstitute of Physics Publishing200510.1201/9781420034462.ch4Search in Google Scholar

Kalvøy H, Johnsen GK, Martinsen ØG, Grimnes S. New Method for Separation of Electrode Polarization Impedance from Measured Tissue Impedance. The Open Biomedical Engineering Journal. 2011;5:8-13. https://doi.org/10.2174/1874120701105010008KalvøyHJohnsenGKMartinsenØGGrimnesSNew Method for Separation of Electrode Polarization Impedance from Measured Tissue ImpedanceThe Open Biomedical Engineering Journal20115813https://doi.org/10.2174/187412070110501000810.2174/1874120701105010008310231221625369Search in Google Scholar

Tibbitt MW, Anseth KS. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng. 2009;103(4):655-63. https://doi.org/10.1002/bit.22361TibbittMWAnsethKSHydrogels as extracellular matrix mimics for 3D cell cultureBiotechnol Bioeng2009103465563https://doi.org/10.1002/bit.2236110.1002/bit.22361299774219472329Search in Google Scholar

Mulhall HJ, Hughes MP, Kazmi B, Lewis MP, Labeed FH. Epithelial cancer cells exhibit different electrical properties when cultured in 2D and 3D environments. Biochim Biophys Acta. 2013;1839(11):5136-41. https://doi.org/10.1016/j.bbagen.2013.07.008MulhallHJHughesMPKazmiBLewisMPLabeedFHEpithelial cancer cells exhibit different electrical properties when cultured in 2D and 3D environmentsBiochim Biophys Acta2013183911513641https://doi.org/10.1016/j.bbagen.2013.07.00810.1016/j.bbagen.2013.07.00823872353Search in Google Scholar

Huh D, Torisawa YS, Hamilton GA, Kim HJ, Ingber DE. Microengineered physiological biomimicry: organs-on-chips. Lab Chip. 2012;12(12):2156-64. https://doi.org/10.1039/c2lc40089hHuhDTorisawaYSHamiltonGAKimHJIngberDEMicroengineered physiological biomimicry: organs-on-chipsLab Chip20121212215664https://doi.org/10.1039/c2lc40089h10.1039/c2lc40089h22555377Search in Google Scholar

Zhang B, Radisic M. Organ-on-a-chip devices advance to market. Lab Chip. 2017;17(14):2395-420. https://doi.org/10.1039/C6LC01554AZhangBRadisicMOrgan-on-a-chip devices advance to marketLab Chip201717142395420https://doi.org/10.1039/C6LC01554A10.1039/C6LC01554A28617487Search in Google Scholar

Kieninger J, Weltin A, Flamm H, Urban A. Microsensor systems for cell metabolism – from 2D culture to organ-on-chip. Lab Chip. 2018;18:1274-91. https://doi.org/10.1039/C7LC00942AKieningerJWeltinAFlammHUrbanAMicrosensor systems for cell metabolism – from 2D culture to organ-on-chipLab Chip201818127491https://doi.org/10.1039/C7LC00942A10.1039/C7LC00942ASearch in Google Scholar

Wu HC, Yang YJ, Bagnaninchi PO, Jia JB. Electrical impedance tomography for real-time and label-free cellular viability assays of 3D tumour spheroids. Analyst. 2018;143(17):4189-98. https://doi.org/10.1039/C8AN00729BWuHCYangYJBagnaninchiPOJiaJBElectrical impedance tomography for real-time and label-free cellular viability assays of 3D tumour spheroidsAnalyst201814317418998https://doi.org/10.1039/C8AN00729B10.1039/C8AN00729B30070264Search in Google Scholar

Lee SM, Han N, Lee R, Choi IH, Park YB, Shin JS, et al. Real-time monitoring of 3D cell culture using a 3D capacitance biosensor. Biosensors and Bioelectronics. 2016;77:56-61. https://doi.org/10.1016/j.bios.2015.09.005LeeSMHanNLeeRChoiIHParkYBShinJSet alReal-time monitoring of 3D cell culture using a 3D capacitance biosensorBiosensors and Bioelectronics2016775661https://doi.org/10.1016/j.bios.2015.09.00510.1016/j.bios.2015.09.00526386332Search in Google Scholar

Knight E, Przyborski S. Advances in 3D cell culture technologies enabling tissue-like structures to be created in vitro: Reveiw Article. J Anat. 2015;227:746-56. https://doi.org/10.1111/joa.12257KnightEPrzyborskiSAdvances in 3D cell culture technologies enabling tissue-like structures to be created in vitro: Reveiw ArticleJ Anat201522774656https://doi.org/10.1111/joa.1225710.1111/joa.12257469411425411113Search in Google Scholar

Abbott A. Cell culture: Biology's new dimension. Nature. 2003;424:870-2. https://doi.org/10.1038/424870aAbbottACell culture: Biology's new dimensionNature20034248702https://doi.org/10.1038/424870a10.1038/424870a12931155Search in Google Scholar

Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix Elasticity Directs Stem Cell Lineage Specification. J Biomech Eng. 2006;126:677-89. https://doi.org/10.1016/j.cell.2006.06.044EnglerAJSenSSweeneyHLDischerDEMatrix Elasticity Directs Stem Cell Lineage SpecificationJ Biomech Eng200612667789https://doi.org/10.1016/j.cell.2006.06.04410.1016/j.cell.2006.06.04416923388Search in Google Scholar

Griffith LG, Swartz MA. Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol. 2006;7:211-24. https://doi.org/10.1038/nrm1858GriffithLGSwartzMACapturing complex 3D tissue physiology in vitroNat Rev Mol Cell Biol2006721124https://doi.org/10.1038/nrm185810.1038/nrm185816496023Search in Google Scholar

Antoni D, Burckel H, Josset E, Noel G. Three-Dimensional cell culture: A breakthrough in Vivo. Int J Mol Sci. 2015;16(3):5517-27. https://doi.org/10.3390/ijms16035517AntoniDBurckelHJossetENoelGThree-Dimensional cell culture: A breakthrough in VivoInt J Mol Sci2015163551727https://doi.org/10.3390/ijms1603551710.3390/ijms16035517439449025768338Search in Google Scholar

Zhang Y. Tissue-specific extracellular matrix coatings for the promotion of cell proliferation and maintenance of cell phenotype. . Biomaterials. 2009;30:4021-8. https://doi.org/10.1016/j.biomaterials.2009.04.005ZhangYTissue-specific extracellular matrix coatings for the promotion of cell proliferation and maintenance of cell phenotypeBiomaterials20093040218https://doi.org/10.1016/j.biomaterials.2009.04.00510.1016/j.biomaterials.2009.04.005840421919410290Search in Google Scholar

Halfter W. New concepts in basement membrane biology. FEBS J. 2015;282:4466-79. https://doi.org/10.1111/febs.13495HalfterWNew concepts in basement membrane biologyFEBS J2015282446679https://doi.org/10.1111/febs.1349510.1111/febs.1349526299746Search in Google Scholar

Lei KF. Review on Impedance Detection of Cellular Responses in Micro/Nano Environment Micromachines. 2014;5:1-12.LeiKFReview on Impedance Detection of Cellular Responses in Micro/Nano Environment Micromachines2014511210.3390/mi5010001Search in Google Scholar

Smith LE, Smallwood R, Macneil S. A comparison of imaging methodologies for 3D tissue engineering. Microsc Res Tech. 2010;73(12):1123-33. https://doi.org/10.1002/jemt.20859SmithLESmallwoodRMacneilSA comparison of imaging methodologies for 3D tissue engineeringMicrosc Res Tech20107312112333https://doi.org/10.1002/jemt.2085910.1002/jemt.2085920981758Search in Google Scholar

Andersson H, Van den Berg A. Microfabrication and microfluidics for tissue engineering: state of the art and future opportunities. Lab Chip. 2004;4(2). https://doi.org/10.1039/b314469kAnderssonHVanden Berg AMicrofabrication and microfluidics for tissue engineering: state of the art and future opportunitiesLab Chip200442https://doi.org/10.1039/b314469k10.1039/b314469k15052347Search in Google Scholar

Erickson D, Li D. Integrated microfluidic devices: A Review. Analytica Chimica Acta 2004;507:11-26. https://doi.org/10.1016/j.aca.2003.09.019EricksonDLiDIntegrated microfluidic devices: A ReviewAnalytica Chimica Acta20045071126https://doi.org/10.1016/j.aca.2003.09.01910.1016/j.aca.2003.09.019Search in Google Scholar

Huh D, Kim HJ, Fraser JP. Microfabrication of Human Organs-on-Chips. Nat Protoc. 2013;8:2135-57. https://doi.org/10.1038/nprot.2013.137HuhDKimHJFraserJPMicrofabrication of Human Organs-on-ChipsNat Protoc20138213557https://doi.org/10.1038/nprot.2013.13710.1038/nprot.2013.13724113786Search in Google Scholar

Sung JH, Esch MB, Prot JM. Microfabricated Mammalian Organ Systems and Their Integration into Models of Whole Animals and Humans. Lab Chip. 2013;13:1201-12. https://doi.org/10.1039/c3lc41017jSungJHEschMBProtJM. Microfabricated Mammalian Organ SystemsTheirIntegrationinto Models of Whole Animals and HumansLab Chip201313120112https://doi.org/10.1039/c3lc41017j10.1039/c3lc41017j359374623388858Search in Google Scholar

Stancescu M, Molnar P, McAleer CW, al. e. A phenotypic in vitro model for the main determinants of human whole heart function. Biomaterials. 2015;60:20-30. https://doi.org/10.1016/j.biomaterials.2015.04.035StancescuMMolnarPMcAleerCWal. eA phenotypic in vitro model for the main determinants of human whole heart functionBiomaterials2015602030https://doi.org/10.1016/j.biomaterials.2015.04.03510.1016/j.biomaterials.2015.04.035445814925978005Search in Google Scholar

Oleaga C, Bernabini C, Smith AS, al. e. Mulit-organ toxicity demonstration in a functional human in vitro system composed of four organs. Sci Rep. 2016;6(20030).OleagaCBernabiniCSmithASal. eMulit-organ toxicity demonstration in a functional human in vitro system composed of four organsSci Rep201662003010.1038/srep20030473827226837601Search in Google Scholar

Sakolish CM. Modeling Barrier Tissues in Vitro: Methods, Achievements and challenges. The Lancet. 2016;5:30-9.SakolishCMModeling Barrier Tissues in Vitro: Methods, Achievements and challengesThe Lancet2016530910.1016/j.ebiom.2016.02.023481682927077109Search in Google Scholar

Ostrovidov S, Sakai Y, Fujii T. Integration of a pump and an electrical sensor into a membrane-based PDMS microbioreactor for cell culture and drug testing. Biomed Microdevices. 2011;13(5):847-64. https://doi.org/10.1007/s10544-011-9555-1OstrovidovSSakaiYFujiiTIntegration of a pump and an electrical sensor into a membrane-based PDMS microbioreactor for cell culture and drug testingBiomed Microdevices201113584764https://doi.org/10.1007/s10544-011-9555-110.1007/s10544-011-9555-121728068Search in Google Scholar

Meyvantsson I, Warrick JW, Hayes S, Skoien A, Beebe DJ. Automated cell culture in high density tubeless microfluidic device arrays Lab on a Chip. 2008(5).MeyvantssonIWarrickJWHayesSSkoienABeebeDJAutomated cell culture in high density tubeless microfluidic device arrays Lab on a Chip2008510.1039/b715375a18432341Search in Google Scholar

Zervantonakis IK. Microfluidic devices for studying heterotypic cell-cell interactions and tissue specimen cultures under controlled microenvironments. Biomicrofluidics. 2011;5. https://doi.org/10.1063/1.3553237ZervantonakisIKMicrofluidic devices for studying heterotypic cell-cell interactions and tissue specimen cultures under controlled microenvironmentsBiomicrofluidics20115https://doi.org/10.1063/1.355323710.1063/1.3553237308234321522496Search in Google Scholar

Li X, Valadez A, Zuo P, Nie Z. Microfluidic 3D cell culture: Potential application for tissue-based bioassays. Bioanalysis. 2012;4:1509-25. https://doi.org/10.4155/bio.12.133LiXValadezAZuoPNieZMicrofluidic 3D cell culture: Potential application for tissue-based bioassaysBioanalysis20124150925https://doi.org/10.4155/bio.12.13310.4155/bio.12.133390968622793034Search in Google Scholar

Asphahani F, Zhang M. Cellular impedance biosensors for drug screening and toxin detection. Analyst. 2007;132(9):835-41. https://doi.org/10.1039/b704513aAsphahaniFZhangMCellular impedance biosensors for drug screening and toxin detectionAnalyst2007132983541https://doi.org/10.1039/b704513a10.1039/b704513a320511717710258Search in Google Scholar

Kilic T, Navaee F, Stradolini F, Renaud P, Carrara S. Organs-on-chip monitoring: sensors and other strategies. Review Article. Microphysiological Systems. 2018;2(5).KilicTNavaeeFStradoliniFRenaudPCarraraSOrgans-on-chip monitoring: sensors and other strategies. Review ArticleMicrophysiological Systems20182510.21037/mps.2018.01.01Search in Google Scholar

Huang HH, Pan SJ, Lu FH. Surface electrochemical impedance in situ monitoring of cell-cultured titanium with a nano-network surface layer. Scripta Materialia. 2005;53(9):1037-42. https://doi.org/10.1016/j.scriptamat.2005.07.006HuangHHPanSJLuFHSurface electrochemical impedance in situ monitoring of cell-cultured titanium with a nano-network surface layerScripta Materialia2005539103742https://doi.org/10.1016/j.scriptamat.2005.07.00610.1016/j.scriptamat.2005.07.006Search in Google Scholar

Kim HJ, Huh D, Hamilton G, Ingber DE. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip. 2012;12(12):2165-74. https://doi.org/10.1039/c2lc40074jKimHJHuhDHamiltonGIngberDEHuman gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flowLab Chip20121212216574https://doi.org/10.1039/c2lc40074j10.1039/c2lc40074jSearch in Google Scholar

Daza P, Olmo A, Canete D, Yufera A. Monitoring living cell assays with bio-impedance sensors. Sensors and Actuators B: Chemical. 2013;176:605-10. https://doi.org/10.1016/j.snb.2012.09.083DazaPOlmoACaneteDYuferaAMonitoring living cell assays with bio-impedance sensorsSensors and Actuators B: Chemical201317660510https://doi.org/10.1016/j.snb.2012.09.08310.1016/j.snb.2012.09.083Search in Google Scholar

Serrano JA, Pérez P, Maldonado A, Martín M, Olmo A, Daza P, et al., editors. Practical Characterization of cell-electrode electrical models in bioimpedance assays In Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC); 2018. https://doi.org/10.5220/0006712601000108SerranoJAPérezPMaldonadoAMartínMOlmoADazaPet al., editorsPractical Characterization of cell-electrode electrical models in bioimpedance assays In Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC)2018https://doi.org/10.5220/000671260100010810.5220/0006712601000108Search in Google Scholar

Ducommun P, Ruffieux PA, Kadouri A. Process Development in a Packed Bed Bioreactor. Animal Cell Technology: From Target to Market2002.DucommunPRuffieuxPAKadouriAProcess Development in a Packed Bed Bioreactor. Animal Cell Technology: From Target to Market200210.1007/978-94-010-0369-8_97Search in Google Scholar

Gloeckner H, Jonuleit T, Lemke HD. Monitoring of cell viability and cell growth in a hollow-fiber bioreactor by use of the dye Alamar Blue. Journal of Immunological Methods. 2001;252:131-8. https://doi.org/10.1016/S0022-175901)00347-7GloecknerHJonuleitTLemkeHDMonitoring of cell viability and cell growth in a hollow-fiber bioreactor by use of the dye Alamar BlueJournal of Immunological Methods20012521318https://doi.org/10.1016/S0022-175901)00347-710.1016/S0022-1759(01)00347-7Search in Google Scholar

K'Owino IO, Sadik OA. Impedance spectroscopy: A powerful tool for rapid biomolecular screening and cell culture monitoring. Electroanalysis. 2005;17(23):2101-13. https://doi.org/10.1002/elan.200503371K'OwinoIOSadikOAImpedance spectroscopy: A powerful tool for rapid biomolecular screening and cell culture monitoringElectroanalysis20051723210113https://doi.org/10.1002/elan.20050337110.1002/elan.200503371Search in Google Scholar

Bürgel SC, Diener L, Frey O, Kim JY, Hierlemann A. Automated, Multiplexed Electrical Impedance Spectroscopy Platform for Continuous Monitoring of Microtissue Spheroids. Anal Chem. 2016;88(22). https://doi.org/10.1021/acs.analchem.6b01410BürgelSCDienerLFreyOKimJYHierlemannAAutomated, Multiplexed Electrical Impedance Spectroscopy Platform for Continuous Monitoring of Microtissue SpheroidsAnal Chem20168822https://doi.org/10.1021/acs.analchem.6b0141010.1021/acs.analchem.6b01410761055527650426Search in Google Scholar

Schmid YRF, Burgel SC. Electrical Impedance Spectroscopy for Microtissue Spheroid Analysis in Hanging-Drop Networks. ACS Sens. 2016;1(8).SchmidYRFBurgelSCElectrical Impedance Spectroscopy for Microtissue Spheroid Analysis in Hanging-Drop NetworksACS Sens20161810.1021/acssensors.6b00272761057933851029Search in Google Scholar

Krommenhoek EE. Monitoring of yeast cell concentration using a micromachnined impedance sensor. Sensors and actuators B: Chemical. 2006;115(1). https://doi.org/10.1016/j.snb.2005.09.028KrommenhoekEEMonitoring of yeast cell concentration using a micromachnined impedance sensorSensors and actuators B: Chemical20061151https://doi.org/10.1016/j.snb.2005.09.02810.1016/j.snb.2005.09.028Search in Google Scholar

Sharma R. On-chip microelectrode impedance analysis of mammalian cell viability during biomanufacturing. Biomicrofluidics. 2014;8(5). https://doi.org/10.1063/1.4895564SharmaROn-chip microelectrode impedance analysis of mammalian cell viability during biomanufacturingBiomicrofluidics201485https://doi.org/10.1063/1.489556410.1063/1.4895564418959625332745Search in Google Scholar

Stolwijk J, Hartmann C, Balani P, Albermann S, Keese C. Impedance analysis of adherent cells after in situ electroporation: non-invasive monitoring during intracellular manipulations. BiosensBioelectron. 2011 26:4720-7. https://doi.org/10.1016/j.bios.2011.05.033StolwijkJHartmannCBalaniPAlbermannSKeeseCImpedance analysis of adherent cells after in situ electroporation: non-invasive monitoring during intracellular manipulationsBiosensBioelectron20112647207https://doi.org/10.1016/j.bios.2011.05.03310.1016/j.bios.2011.05.03321684144Search in Google Scholar

Senez V, Lennon E, Ostrovidov S, Yamamoto T, Fujita H, Sakai Y, et al. Integrated 3-D Silicon Electrodes for Electrochemical Sensing in Microfluidic Environments: Application to Single-Cell Characterization IEEE Sens J. 2008:548-57. https://doi.org/10.1109/JSEN.2008.918948SenezVLennonEOstrovidovSYamamotoTFujitaHSakaiYet alIntegrated 3-D Silicon Electrodes for Electrochemical Sensing in Microfluidic Environments: Application to Single-Cell Characterization IEEE Sens J200854857https://doi.org/10.1109/JSEN.2008.91894810.1109/JSEN.2008.918948Search in Google Scholar

Rissanen AK, editor Monitoring Capillary Endothelial Cell Culture and Capillary Formation in a Microdevice by Impedance Spectroscopy Measurements. . Proceedings of the 3rd Annual International IEEE EMBS Special Topic Conference on Microtechnologies in Medicine and Biology; 2005. https://doi.org/10.1109/MMB.2005.1548426RissanenAKeditor Monitoring Capillary Endothelial Cell Culture and Capillary Formation in a Microdevice by Impedance Spectroscopy Measurements. Proceedings of the 3rd Annual International IEEE EMBS Special Topic Conference on Microtechnologies in Medicine and Biology2005https://doi.org/10.1109/MMB.2005.154842610.1109/MMB.2005.1548426Search in Google Scholar

Linderholm P, Braschler T, Vannod J, Barrandon Y, Brouard M, Renaud P. Two-dimensional impedance imaging of cell migration and epithelial stratification. Lab Chip. 2006;6:1155-62. https://doi.org/10.1039/b603856eLinderholmPBraschlerTVannodJBarrandonYBrouardMRenaudPTwo-dimensional impedance imaging of cell migration and epithelial stratificationLab Chip20066115562https://doi.org/10.1039/b603856e10.1039/b603856e16929394Search in Google Scholar

Gawad S. Dielectric spectroscopy in a micromachined flow cytometer: theoretical and practical considerations. Lab on a Chip. 2004(3).GawadSDielectric spectroscopy in a micromachined flow cytometer: theoretical and practical considerationsLab on a Chip2004310.1039/b313761a15159786Search in Google Scholar

Jang L-S, Wang M-H. Microfluidic device for cell capture and impedance measurement. Biomedical Microdevices. 2007;9:737-43. https://doi.org/10.1007/s10544-007-9084-0JangL-SWangM-HMicrofluidic device for cell capture and impedance measurementBiomedical Microdevices2007973743https://doi.org/10.1007/s10544-007-9084-010.1007/s10544-007-9084-017508285Search in Google Scholar

Sun T, Tsuda S, Zauner KP, Morgan H. On-chip electrical impedance tomography for imaging biological cells. Biosens Bioelectron. 2010;25:1109-15. https://doi.org/10.1016/j.bios.2009.09.036SunTTsudaSZaunerKPMorganHOn-chip electrical impedance tomography for imaging biological cellsBiosens Bioelectron201025110915https://doi.org/10.1016/j.bios.2009.09.03610.1016/j.bios.2009.09.03619850464Search in Google Scholar

Malleo D. Continuous differential impedance spectroscopy of single cells. Microfluidics and Nanofluidics. 2010;9(2-3). https://doi.org/10.1007/s10404-009-0534-2MalleoDContinuous differential impedance spectroscopy of single cellsMicrofluidics and Nanofluidics201092-3https://doi.org/10.1007/s10404-009-0534-210.1007/s10404-009-0534-2294438020927185Search in Google Scholar

Schade-Kampmann G, Huwiler A, Hebeisen M, Hessler T, Di Berardino M. On-chip non-invasive and label-free cell discrimination by impedance spectroscopy. Cell Proliferation in basic and clinical sciences. 2008;41(5).Schade-KampmannGHuwilerAHebeisenMHesslerTDiBerardino MOn-chip non-invasive and label-free cell discrimination by impedance spectroscopyCell Proliferation in basic and clinical sciences200841510.1111/j.1365-2184.2008.00548.x649692318673370Search in Google Scholar

Holmes D. Leukocyte analysis and differentiation using high speed microfluidic single cell impedance cytometry Lab on a Chip. 2009(20).HolmesDLeukocyte analysis and differentiation using high speed microfluidic single cell impedance cytometry Lab on a Chip20092010.1039/b910053a19789739Search in Google Scholar

Keese CR, Wegener J, Walker SR, Giaever I. Electrical wound-healing assay for cells in vitro. PNAS 2004;101(6). https://doi.org/10.1073/pnas.0307588100KeeseCRWegenerJWalkerSRGiaeverIElectrical wound-healing assay for cells in vitroPNAS20041016https://doi.org/10.1073/pnas.030758810010.1073/pnas.030758810034177314747654Search in Google Scholar

Wang P, Liu Q. Cell-Based Biosensors: Principles and Applications. 2010.WangPLiuQCell-Based Biosensors: Principles and Applications2010Search in Google Scholar

Fricke H, Morse S. The electrical resistance and capacity of blood for frequencies between 800 Hz and 4.5 MHz. J Gen Physiol. 1925;9:153-67. https://doi.org/10.1085/jgp.9.2.153FrickeHMorseSThe electrical resistance and capacity of blood for frequencies between 800 Hz and 4.5 MHzJ Gen Physiol1925915367https://doi.org/10.1085/jgp.9.2.15310.1085/jgp.9.2.153214080019872239Search in Google Scholar

Wang M. Electrode models in electrical impedance tomography. J Zhejiang Univ Sci A. 2005;6:1386-93. https://doi.org/10.1631/jzus.2005.A1386WangMElectrode models in electrical impedance tomographyJ Zhejiang Univ Sci A20056138693https://doi.org/10.1631/jzus.2005.A138610.1631/jzus.2005.A1386Search in Google Scholar

Daniels JS, Pourmand N. Label-Free Impedance Biosensors: Opportunities and Challenges: A Review. Electroanalysis. 2007;19(12):1239-57. https://doi.org/10.1002/elan.200603855DanielsJSPourmandNLabel-Free Impedance Biosensors: Opportunities and Challenges: A ReviewElectroanalysis20071912123957https://doi.org/10.1002/elan.20060385510.1002/elan.200603855217479218176631Search in Google Scholar

Bera TK, Nagaraju J. Electrical Impedance Spectroscopic Studies on Broiler Chicken Tissue Suitable for the Development of Practical Phantoms in Multifrequency EIT Journal of Electrical Bioimpedance. 2011;2:48-63. https://doi.org/10.5617/jeb.174BeraTKNagarajuJElectrical Impedance Spectroscopic Studies on Broiler Chicken Tissue Suitable for the Development of Practical Phantoms in Multifrequency EIT Journal of Electrical Bioimpedance201124863https://doi.org/10.5617/jeb.17410.5617/jeb.174Search in Google Scholar

Bera TK. Bioelectrical Impedance Methods for Noninvasive Health Monitoring: A Review. J Med Eng. 2014;2014.BeraTKBioelectrical Impedance Methods for Noninvasive Health Monitoring: A ReviewJ Med Eng2014201410.1155/2014/381251478269127006932Search in Google Scholar

Bouchaala D, Kanoun O, Derbel N. High accurate and wideband current excitation for bioimpedance health monitoring systems. Measurement. 2015;79:339-48. https://doi.org/10.1016/j.measurement.2015.07.054BouchaalaDKanounODerbelNHigh accurate and wideband current excitation for bioimpedance health monitoring systemsMeasurement20157933948https://doi.org/10.1016/j.measurement.2015.07.05410.1016/j.measurement.2015.07.054Search in Google Scholar

Kerner TE. Electrical impedance spectroscopy of the breast: clinical imaging results in 26 subjects. IEEE Trans Med Imaging. 2002;21(6):638-45. https://doi.org/10.1109/TMI.2002.800606KernerTEElectrical impedance spectroscopy of the breast: clinical imaging results in 26 subjectsIEEE Trans Med Imaging200221663845https://doi.org/10.1109/TMI.2002.80060610.1109/TMI.2002.80060612166860Search in Google Scholar

Aberg P. Skin cancer identification using multifrequency electrical impedance—a potential screening tool. IEEE Trans Biomed Eng. 2004;51:2097-102. https://doi.org/10.1109/TBME.2004.836523AbergPSkin cancer identification using multifrequency electrical impedance—a potential screening toolIEEE Trans Biomed Eng2004512097102https://doi.org/10.1109/TBME.2004.83652310.1109/TBME.2004.83652315605856Search in Google Scholar

Osterman KS. Non-invasive assessment of radiation injury with electrical impedance spectroscopy. Phys Med Biol. 2004;49:665-83. https://doi.org/10.1088/0031-9155/49/5/002OstermanKSNon-invasive assessment of radiation injury with electrical impedance spectroscopyPhys Med Biol20044966583https://doi.org/10.1088/0031-9155/49/5/00210.1088/0031-9155/49/5/00215070195Search in Google Scholar

Brown BH. Detection of cervical intraepithelial neoplasia using impedance spectroscopy: a prospective study. BJOG: An Int J Obstet Gynaecol. 2005;112:802-6. https://doi.org/10.1111/j.1471-0528.2004.00530.xBrownBHDetection of cervical intraepithelial neoplasia using impedance spectroscopy: a prospective studyBJOG: An Int J Obstet Gynaecol20051128026https://doi.org/10.1111/j.1471-0528.2004.00530.x10.1111/j.1471-0528.2004.00530.x15924541Search in Google Scholar

Süselbeck T, Thielecke H, Köchlin J, Cho S, Weinschenk I, Metz J, et al. Intravascular electric impedance spectroscopy of atherosclerotic lesions using a new impedance catheter system. Basic Res Cardiol. 2005;100:446-52. https://doi.org/10.1007/s00395-005-0527-6SüselbeckTThieleckeHKöchlinJChoSWeinschenkIMetzJet alIntravascular electric impedance spectroscopy of atherosclerotic lesions using a new impedance catheter systemBasic Res Cardiol200510044652https://doi.org/10.1007/s00395-005-0527-610.1007/s00395-005-0527-615795794Search in Google Scholar

Soley A. On-line monitoring of yeast cell growth by impedance spectroscopy. J Biotechnol 2005;118:398-405. https://doi.org/10.1016/j.jbiotec.2005.05.022SoleyAOn-line monitoring of yeast cell growth by impedance spectroscopyJ Biotechnol2005118398405https://doi.org/10.1016/j.jbiotec.2005.05.02210.1016/j.jbiotec.2005.05.02216026878Search in Google Scholar

Strand-Amundsen R, Tronstad C, Kalvøy H, Gundersen Y, Krohn CD, Aasen AO, Holhjem L, Reims HM, Martinsen ØG, Høgetveit JO, Ruud TE, Tønnessen TI. In vivo characterization of ischemic small intestine using bioimpedance measurements. Physiological Measurement. 2016;37(2):257-75. https://doi.org/10.1088/0967-3334/37/2/257Strand-AmundsenRTronstadCKalvøyHGundersenYKrohnCDAasenAOHolhjemLReimsHMMartinsenØGHøgetveitJORuudTETønnessenTIIn vivo characterization of ischemic small intestine using bioimpedance measurementsPhysiological Measurement201637225775https://doi.org/10.1088/0967-3334/37/2/25710.1088/0967-3334/37/2/25726805916Search in Google Scholar

Strand-Amundsen R, Høgetveit JO, Tronstad C. Small intestinal ischemia and reperfusion – Bioimpedance measurements. Physiological Measurement. 2018;39(2). https://doi.org/10.1088/1361-6579/aaa576Strand-AmundsenRHøgetveitJOTronstadCSmall intestinal ischemia and reperfusion – Bioimpedance measurementsPhysiological Measurement2018392https://doi.org/10.1088/1361-6579/aaa57610.1088/1361-6579/aaa57629303488Search in Google Scholar

Hildebrandt C, Thielecke H. Non-invasive Characterization of the Osteogenic Differentiation of hMSCs in 3D by Impedance Spectroscopy. In: Dossel O, Schlegel WC, editors. World Congress on Medical Physics and Biomedical Engineering, Vol 25, Pt 10: Biomaterials, Cellular and Tissue Engineering, Artificial Organs. IFMBE Proceedings. 25. New York: Springer; 2009. p. 81-84. https://doi.org/10.1007/978-3-642-03900-3_24HildebrandtCThieleckeHNon-invasive Characterization of the Osteogenic Differentiation of hMSCs in 3D by Impedance SpectroscopyDosselOSchlegelWCWorld Congress on Medical Physics and Biomedical Engineering, Vol 25, Pt 10: Biomaterials, Cellular and Tissue Engineering, Artificial Organs. IFMBE Proceedings. 25New YorkSpringer;20098184https://doi.org/10.1007/978-3-642-03900-3_2410.1007/978-3-642-03900-3_24Search in Google Scholar

Yuste Y, Serrano, J., Olmo, A., Maldonado-Jacobi, A., Pérez, P., Huertas, G., Pereira, S., Portilla, F. and Yúfera, A., editor Monitoring Muscle Stem Cell Cultures with Impedance Spectroscopy. In Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2018); 2018. https://doi.org/10.5220/0006712300960099YusteYSerranoJ.OlmoA.Maldonado-JacobiA.PérezP.HuertasG.PereiraS.PortillaF.YúferaA.editor Monitoring Muscle Stem Cell Cultures with Impedance Spectroscopy. In Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2018)2018https://doi.org/10.5220/000671230096009910.5220/0006712300960099Search in Google Scholar

Martínez-Teruel J, García-Sánchez T, Fontova A, Bragós R. Electrical Impedance Spectroscopy cell monitoring in a miniaturized bioreactor 19th IMEKO TC 4 Symposium and 17th IWADC Workshop Advances in Instrumentation and Sensors Interoperability Barcelona, Spain 2013.Martínez-TeruelJGarcía-SánchezTFontovaABragósRElectrical Impedance Spectroscopy cell monitoring in a miniaturized bioreactor 19th IMEKO TC 4 Symposium and 17th IWADC Workshop Advances in Instrumentation and Sensors Interoperability BarcelonaSpain2013Search in Google Scholar

Xu Y, Xie X. Review of impedance measurements of whole cells. Biosensors & Bioelectronics. 2015;77(77).XuYXieXReview of impedance measurements of whole cellsBiosensors & Bioelectronics2015777710.1016/j.bios.2015.10.02726513290Search in Google Scholar

Pérez P, Maldonado-Jacobi A, López A, Martínez C, Olmo A, Huertas G, et al. "Remote Sensing of Cell Culture Assays. Cell Culture: InTech Europe; 2017.PérezPMaldonado-JacobiALópezAMartínezCOlmoAHuertasGet al"Remote Sensing of Cell Culture Assays. Cell CultureInTech Europe201710.5772/67496Search in Google Scholar

DePaola N, Phelps JE, Florez L, Keese CR, Minnear FL, Giaever I, et al. Electrical impedance of cultured endothelium under fluid flow. Annals of Biomedical Engineering. 2001;29(8):648-56. https://doi.org/10.1114/1.1385811DePaolaNPhelpsJEFlorezLKeeseCRMinnearFLGiaeverIet alElectrical impedance of cultured endothelium under fluid flowAnnals of Biomedical Engineering200129864856https://doi.org/10.1114/1.138581110.1114/1.138581111556721Search in Google Scholar

Wang H, Sobahi N, Han A. Impedance spectroscopy-based cell/particle position detection in microfluidic systems Lab on a Chip. 2017;7. https://doi.org/10.1039/C6LC01223JWangHSobahiNHanAImpedance spectroscopy-based cell/particle position detection in microfluidic systems Lab on a Chip20177https://doi.org/10.1039/C6LC01223J10.1039/C6LC01223JSearch in Google Scholar

Kozhevnikov E, Hou XL, Qiao SP, Zhao YF, Li CF, Tian WM. Electrical impedance spectroscopy - a potential method for the study and monitoring of a bone critical-size defect healing process treated with bone tissue engineering and regenerative medicine approaches. Journal of Materials Chemistry B. 2016;4(16):2757-67. https://doi.org/10.1039/C5TB02707AKozhevnikovEHouXLQiaoSPZhaoYFLiCFTianWMElectrical impedance spectroscopy - a potential method for the study and monitoring of a bone critical-size defect healing process treated with bone tissue engineering and regenerative medicine approachesJournal of Materials Chemistry B2016416275767https://doi.org/10.1039/C5TB02707A10.1039/C5TB02707ASearch in Google Scholar

Kiviharju K, Salonen K, Moilanen U, Meskanen E, Leisola M, Eerikäinen T. On-line biomass measurements in bioreactor cultivations: comparison study of two on-line probes. . J Ind Microbiol Biotechnol. 2007;34(8):561-6. https://doi.org/10.1007/s10295-007-0233-5KiviharjuKSalonenKMoilanenUMeskanenELeisolaMEerikäinenTOn-line biomass measurements in bioreactor cultivations: comparison study of two on-line probesJ Ind Microbiol Biotechnol20073485616https://doi.org/10.1007/s10295-007-0233-510.1007/s10295-007-0233-5Search in Google Scholar

Liu JJ, Li H, Zhang F, Li X, Wang L, Chen Y. Online impedance monitoring of yeast cell culture behaviors. Microelectronic Engineering. 2011;88(8):1711-3. https://doi.org/10.1016/j.mee.2010.12.056LiuJJLiHZhangFLiXWangLChenYOnline impedance monitoring of yeast cell culture behaviorsMicroelectronic Engineering201188817113https://doi.org/10.1016/j.mee.2010.12.05610.1016/j.mee.2010.12.056Search in Google Scholar

Holhjem L, Strand-Amundsen R, Aasmundtveit KE, Tønnessen TI. Development of a conductometric biocompatible sensor for detecting ischemia. Microelectronics Packaging Conference (EMPC); European2013.HolhjemLStrand-AmundsenRAasmundtveitKETønnessenTIDevelopment of a conductometric biocompatible sensor for detecting ischemia. Microelectronics Packaging Conference (EMPC);European2013Search in Google Scholar

El Khaled D, Novas N, Gazquez JA, Manzano-Agugliaro F. Dielectric and Bioimpedance Research Studies: A Scientometric Approach Using the Scopus Database. A Review. MDPI Publications. 2018;6(6).ElKhaled DNovasNGazquezJAManzano-AgugliaroFDielectric and Bioimpedance Research Studies: A Scientometric Approach Using the Scopus DatabaseA Review. MDPI Publications20186610.3390/publications6010006Search in Google Scholar

Giaever I, Keese CR. Micromotion of mammalian cells measured electrically. Proc Nail Acad Sci USA Cell Biology. 1991;88:7896-900. https://doi.org/10.1073/pnas.88.17.7896GiaeverIKeeseCRMicromotion of mammalian cells measured electricallyProc Nail Acad Sci USA Cell Biology1991887896900https://doi.org/10.1073/pnas.88.17.789610.1073/pnas.88.17.7896Search in Google Scholar

Jeong SH, Lee DW, Kim S, Kim J, Ku B. A study of electrochemical biosensor for analysis of three-dimensional (3D) cell culture. Biosens Bioelectron. 2012;35:128-33. https://doi.org/10.1016/j.bios.2012.02.039JeongSHLeeDWKimSKimJKuBA study of electrochemical biosensor for analysis of three-dimensional (3D) cell cultureBiosens Bioelectron20123512833https://doi.org/10.1016/j.bios.2012.02.03910.1016/j.bios.2012.02.039Search in Google Scholar

Wegener J, Sieber M, Galla HJ. Impedance analysis of epithelial and endothelial cell monolayers cultured on gold surfaces. J Biochem Biophys Methods 1996;32(3):151-70. https://doi.org/10.1016/0165-022X(96)00005-XWegenerJSieberMGallaHJImpedance analysis of epithelial and endothelial cell monolayers cultured on gold surfacesJ Biochem Biophys Methods199632315170https://doi.org/10.1016/0165-022X(96)00005-X10.1016/0165-022X(96)00005-XSearch in Google Scholar

Szulcek R, Bogaard HJ, Van Nieuw Amerongen GP. Electric Cell-substrate Impedance Sensing for the Quantification of Endothelial Proliferation, Barrier Function, and Motility. J Vis Exp 2014;85(51300). https://doi.org/10.3791/51300SzulcekRBogaardHJVanNieuw Amerongen GPElectric Cell-substrate Impedance Sensing for the Quantification of Endothelial Proliferation, Barrier Function, and MotilityJ Vis Exp20148551300https://doi.org/10.3791/5130010.3791/51300415905224747269Search in Google Scholar

Lo CM, Keese CR, Giaever I. Monitoring motion of confluent cells in tissue culture. Exp Cell Res 1993;204(1):102-9. https://doi.org/10.1006/excr.1993.1014LoCMKeeseCRGiaeverIMonitoring motion of confluent cells in tissue cultureExp Cell Res199320411029https://doi.org/10.1006/excr.1993.101410.1006/excr.1993.10148416788Search in Google Scholar

Giaever I, Keese CR. A morphological biosensor for mammalian cells. Nature. 1993;366:591-2. https://doi.org/10.1038/366591a0GiaeverIKeeseCRA morphological biosensor for mammalian cellsNature19933665912https://doi.org/10.1038/366591a010.1038/366591a0Search in Google Scholar

Lo CM, Keese CR, Giaever I. Impedance analysis of MDCK cells measured by electric cell-substrate impedance sensing. Biophys J. 1995;69(6):2800-7. https://doi.org/10.1016/S0006-349595)80153-0LoCMKeeseCRGiaeverIImpedance analysis of MDCK cells measured by electric cell-substrate impedance sensingBiophys J199569628007https://doi.org/10.1016/S0006-349595)80153-010.1016/S0006-3495(95)80153-0Search in Google Scholar

Rahim S, Uren A. A Real-time Electrical Impedance BasedTechnique to Measure Invasion of Endothelial Cell Monolayer by Cancer Cells. Journal of Visualized Experiments. 2011;50.RahimSUrenAA Real-time Electrical Impedance BasedTechnique to Measure Invasion of Endothelial Cell Monolayer by Cancer CellsJournal of Visualized Experiments20115010.3791/2792316928321490581Search in Google Scholar

Bagnaninchi PO, Holmes C, Drummond N, Daoud J, Tabrizian M. Measurements of adipose derived stem cell vitality with optical coherence phase microscopy. Dynamics and Fluctuations in Biomedical Photonics Viii. Proceedings of SPIE. 7898. Bellingham: Spie-Int Soc Optical Engineering; 2011.BagnaninchiPOHolmesCDrummondNDaoudJTabrizianMMeasurements of adipose derived stem cell vitality with optical coherence phase microscopy. Dynamics and Fluctuations in Biomedical Photonics Viii. Proceedings of SPIE. 7898BellinghamSpie-Int Soc Optical Engineering;201110.1117/12.878601Search in Google Scholar

Nordberg RC, Zhang J, Griffith EH, Frank MW, Starly B, Loboa EG. Electrical Cell-Substrate Impedance Spectroscopy Can Monitor Age-Grouped Human Adipose Stem Cell Variability During Osteogenic Differentiation. Stem Cells Translational Medicine. 2016;07:07.NordbergRCZhangJGriffithEHFrankMWStarlyBLoboaEGElectrical Cell-Substrate Impedance Spectroscopy Can Monitor Age-Grouped Human Adipose Stem Cell Variability During Osteogenic DifferentiationStem Cells Translational Medicine2016070710.5966/sctm.2015-0404544281428191763Search in Google Scholar

Pänke O, Balkenhohl T, Kafka J, Schäfer D, Lisdat F. Impedance spectroscopy and biosensing. Adv Biochem Eng Biotechnol 2008;109:195-237. https://doi.org/10.1007/10_2007_081PänkeOBalkenhohlTKafkaJSchäferDLisdatFImpedance spectroscopy and biosensingAdv Biochem Eng Biotechnol2008109195237https://doi.org/10.1007/10_2007_08110.1007/10_2007_08117992488Search in Google Scholar

Wegener J, Keese CR, Giaever I. Electric cell-substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces. Exp Cell Res 2000;259(1):158-66. https://doi.org/10.1006/excr.2000.4919WegenerJKeeseCRGiaeverIElectric cell-substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfacesExp Cell Res2000259115866https://doi.org/10.1006/excr.2000.491910.1006/excr.2000.491910942588Search in Google Scholar

Nguyen DT, Kosobrodov R, et al. Electrode-Skin contact impedance: In vivo measurements on an ovine model. Journal of Physics: Conference Series 434 2013. https://doi.org/10.1088/1742-6596/434/1/012023NguyenDTKosobrodovRet alElectrode-Skin contact impedance: In vivo measurements on an ovine modelJournal of Physics: Conference Series 4342013https://doi.org/10.1088/1742-6596/434/1/01202310.1088/1742-6596/434/1/012023Search in Google Scholar

Srinivasan B, Kolli AR, Esch MB, Abaci HE, Shuler ML, Hickman JJ. TEER measurement techniques for in vitro barrier model systems. J Lab Autom. 2015;20(2):107-26. https://doi.org/10.1177/2211068214561025SrinivasanBKolliAREschMBAbaciHEShulerMLHickmanJJTEER measurement techniques for in vitro barrier model systemsJ Lab Autom201520210726https://doi.org/10.1177/221106821456102510.1177/2211068214561025465279325586998Search in Google Scholar

Elbrecht DH, Long CJ, Hickman JJ. Transepithelial/endothelial Electrical Resistance (TEER) theory and applications for microfluidic body-on-a-chip devices. J Rare Dis Res Treat. 2016;1(3):46-52. https://doi.org/10.29245/2572-9411/2016/3.1026ElbrechtDHLongCJHickmanJJTransepithelial/endothelial Electrical Resistance (TEER) theory and applications for microfluidic body-on-a-chip devicesJ Rare Dis Res Treat2016134652https://doi.org/10.29245/2572-9411/2016/3.102610.29245/2572-9411/2016/3.1026Search in Google Scholar

Benson K, Cramer S, Galla HJ. Impedance-based cell monitoring: barrier properties and beyond. Fluids Barriers CNS. 2013;10(5). https://doi.org/10.1186/2045-8118-10-5BensonKCramerSGallaHJImpedance-based cell monitoring: barrier properties and beyondFluids Barriers CNS2013105https://doi.org/10.1186/2045-8118-10-510.1186/2045-8118-10-5356021323305242Search in Google Scholar

Zucco F, Batto AF, Bises G. An Inter-Laboratory Study to Evaluate the Effects of Medium Composition on the Differentiation and Barrier Function of Caco-2 Cell Lines. Atla-Altern Lab Anim. 2005;33:603-18.ZuccoFBattoAFBisesGAn Inter-Laboratory Study to Evaluate the Effects of Medium Composition on the Differentiation and Barrier Function of Caco-2 Cell LinesAtla-Altern Lab Anim2005336031810.1177/02611929050330061816372835Search in Google Scholar

Bera TK. Applications of Electrical Impedance Tomography (EIT): A Short Review. IOP Conf Ser: Mater Sci Eng. 2018. https://doi.org/10.1088/1757-899X/331/1/012004BeraTKApplications of Electrical Impedance Tomography (EIT): A Short ReviewIOP Conf Ser: Mater Sci Eng2018https://doi.org/10.1088/1757-899X/331/1/01200410.1088/1757-899X/331/1/012004Search in Google Scholar

Bera TK, Nagaraju J. Electrical impedance tomography (EIT): a harmless medical imaging modality, research developments. Computer vision and image processing: methodologies and applications. USA: IGI Global; 2013. p. 224-62.BeraTKNagarajuJElectrical impedance tomography (EIT): a harmless medical imaging modality, research developmentsComputer vision and image processing: methodologies and applicationsUSAIGI Global20132246210.4018/978-1-4666-4558-5.ch013Search in Google Scholar

Bayford R, Tizzard A. Bioimpedance imaging: an overview of potential clinical applications. Analyst. 2012;137(20):4635-43. https://doi.org/10.1039/c2an35874cBayfordRTizzardABioimpedance imaging: an overview of potential clinical applicationsAnalyst201213720463543https://doi.org/10.1039/c2an35874c10.1039/c2an35874c22930423Search in Google Scholar

Lionheart WRB, Kaipio J, McLeod CN. Generalized optimal current patterns and electrical safety in EIT. Physiol Meas. 2001;22(1):85-90. https://doi.org/10.1088/0967-3334/22/1/311LionheartWRBKaipioJMcLeodCNGeneralized optimal current patterns and electrical safety in EITPhysiol Meas20012218590https://doi.org/10.1088/0967-3334/22/1/31110.1088/0967-3334/22/1/31111236893Search in Google Scholar

Wang BS, Weiland JD. Analysis of the Peak Resistance Frequency Method. IEEE Transactions on Biomedical Engineering. 2016;63(10):2086-94. https://doi.org/10.1109/TBME.2015.2510335WangBSWeilandJDAnalysis of the Peak Resistance Frequency MethodIEEE Transactions on Biomedical Engineering20166310208694https://doi.org/10.1109/TBME.2015.251033510.1109/TBME.2015.2510335506681226700855Search in Google Scholar

Malmivuo J, Plonsey R. Bioelectromagnetism: Principles and Application of Bioelectric and Biomagnetic Fields. 1995 (Oxford University Press, New York). https://doi.org/10.1093/acprof:oso/9780195058239.001.0001MalmivuoJPlonseyRBioelectromagnetism: Principles and Application of Bioelectric and Biomagnetic Fields1995Oxford University PressNew Yorkhttps://doi.org/10.1093/acprof:oso/9780195058239.001.000110.1093/acprof:oso/9780195058239.001.0001Search in Google Scholar

Brown B, Seagar A. The Sheffield data collection system. Clin Phys Physiol Meas. 1987;8(91). https://doi.org/10.1088/0143-0815/8/4A/012BrownBSeagarAThe Sheffield data collection systemClin Phys Physiol Meas1987891https://doi.org/10.1088/0143-0815/8/4A/01210.1088/0143-0815/8/4A/012Search in Google Scholar

Hua P, Webster JG, Tompkins WJ, editors. Effect of the measurement method on noise handling and image quality of EIT imaging. In Proc Ninth Int Conf IEEE Eng In Med And Biol Society. 1987; New York.HuaPWebsterJGTompkinsWJEffect of the measurement method on noise handling and image quality of EIT imagingIn Proc Ninth Int Conf IEEE Eng In Med And Biol Society1987New YorkSearch in Google Scholar

Gisser DG, Isaacson D, Newell JC. Current topics in impedance imaging. Clin Phys Physiol Measurement. 1987;8:39-46. https://doi.org/10.1088/0143-0815/8/4A/005GisserDGIsaacsonDNewellJCCurrent topics in impedance imagingClin Phys Physiol Measurement198783946https://doi.org/10.1088/0143-0815/8/4A/00510.1088/0143-0815/8/4A/005Search in Google Scholar

Wang BH, Weiland JD, Ieee. Resistivity Profiles of Wild-type, rd1, and rd10 Mouse Retina. 2015 37th Annual International Conference of the Ieee Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society Conference Proceedings. New York: Ieee; 2015. p. 1650-3.WangBHWeilandJDIeee. Resistivity Profiles of Wild-type, rd1, and rd10 Mouse Retina. 2015 37th Annual International Conference of the Ieee Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society Conference ProceedingsNew YorkIeee201516503Search in Google Scholar

Linderholm P, Marescot L, Loke MH, Renaud P. Cell culture imaging using microimpedance tomography. IEEE Trans Biomed Eng. 2008;55:138-46. https://doi.org/10.1109/TBME.2007.910649LinderholmPMarescotLLokeMHRenaudPCell culture imaging using microimpedance tomographyIEEE Trans Biomed Eng20085513846https://doi.org/10.1109/TBME.2007.91064910.1109/TBME.2007.91064918232355Search in Google Scholar

Sun T, Tsuda S, Green NG. On-chip electrical impedence tomography for monitoring the kinetics in the cell culture. International Conference on Miniaturized Systems for Chemistry and Life Sciences; 2008.SunTTsudaSGreenNGOn-chip electrical impedence tomography for monitoring the kinetics in the cell cultureInternational Conference on Miniaturized Systems for Chemistry and Life Sciences;2008Search in Google Scholar

Agarwal S, Curtin J, Duffy B, Jaiswal S. Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications. Materials Science & Engineering C-Materials for Biological Applications. 2016;68:948-63. https://doi.org/10.1016/j.msec.2016.06.020AgarwalSCurtinJDuffyBJaiswalSBiodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modificationsMaterials Science & Engineering C-Materials for Biological Applications20166894863https://doi.org/10.1016/j.msec.2016.06.02010.1016/j.msec.2016.06.02027524097Search in Google Scholar

Lee EJ, Wi H, McEwan AL, Farooq A, Sohal H, Woo EJ, et al. Design of a microscopic electrical impedance tomography system for 3D continuous non-destructive monitoring of tissue culture. Biomedical Engineering Online. 2014;13:142. https://doi.org/10.1186/1475-925X-13-142LeeEJWiHMcEwanALFarooqASohalHWooEJet alDesign of a microscopic electrical impedance tomography system for 3D continuous non-destructive monitoring of tissue cultureBiomedical Engineering Online201413142https://doi.org/10.1186/1475-925X-13-14210.1186/1475-925X-13-142419608425286865Search in Google Scholar

Yang Y, Jia J, Smith S, Jamil N, Gamal W, Bagnaninchi PO. A miniature electrical impedance tomography sensor and 3-D image reconstruction for cell imaging. IEEE Sens J. 2017;17:514-23. https://doi.org/10.1109/JSEN.2016.2631263YangYJiaJSmithSJamilNGamalWBagnaninchiPOA miniature electrical impedance tomography sensor and 3-D image reconstruction for cell imagingIEEE Sens J20171751423https://doi.org/10.1109/JSEN.2016.263126310.1109/JSEN.2016.2631263Search in Google Scholar

Linderholm P, Vannod J, Barrandon Y, Renaud P. Bipolar resistivity profiling of 3D tissue culture. Biosens Bioelectron. 2007;22:789-96. https://doi.org/10.1016/j.bios.2006.02.016LinderholmPVannodJBarrandonYRenaudPBipolar resistivity profiling of 3D tissue cultureBiosens Bioelectron20072278996https://doi.org/10.1016/j.bios.2006.02.01610.1016/j.bios.2006.02.01616600586Search in Google Scholar

McEwan A, Romsauerova A, Yerworth R, Horesh L, Bayford R, Holder D. Design and calibration of a compact multi-frequency EIT system for acute stroke imaging. Physiological Measurement. 2006;27(5):S199-S210. https://doi.org/10.1088/0967-3334/27/5/S17McEwanARomsauerovaAYerworthRHoreshLBayfordRHolderDDesign and calibration of a compact multi-frequency EIT system for acute stroke imagingPhysiological Measurement2006275S199S210https://doi.org/10.1088/0967-3334/27/5/S1710.1088/0967-3334/27/5/S1716636411Search in Google Scholar

Liu Q, Oh TI, Woo EJ. Design of a microscopic electrical impedance tomography system using two current injections. Physiological Measurement. 2011;32(9):1505-16. https://doi.org/10.1088/0967-3334/32/9/011LiuQOhTIWooEJDesign of a microscopic electrical impedance tomography system using two current injectionsPhysiological Measurement2011329150516https://doi.org/10.1088/0967-3334/32/9/01110.1088/0967-3334/32/9/01121828912Search in Google Scholar

Li G, Pang XF. Effects of electromagnetic field exposure on electromagnetic properties of biological tissues. Progress in Biochemistry and Biophysics. 2011;38:604-10. https://doi.org/10.3724/SP.J.1206.2010.00537LiGPangXFEffects of electromagnetic field exposure on electromagnetic properties of biological tissuesProgress in Biochemistry and Biophysics20113860410https://doi.org/10.3724/SP.J.1206.2010.0053710.3724/SP.J.1206.2010.00537Search in Google Scholar

Farsaci F, Tellone E, Cavallaro M, Russo A, Ficarra S. Low frequency dielectric characteristics of human blood: a non-equilibrium thermodynamic approach. Journal of Molecular Liquids. 2013;188:113-9. https://doi.org/10.1016/j.molliq.2013.09.033FarsaciFTelloneECavallaroMRussoAFicarraSLow frequency dielectric characteristics of human blood: a non-equilibrium thermodynamic approachJournal of Molecular Liquids20131881139https://doi.org/10.1016/j.molliq.2013.09.03310.1016/j.molliq.2013.09.033Search in Google Scholar

Leroy J, Dalmay C, Landoulsi A. Microfluidic biosensors for microwave dielectric spectroscopy. Sensors and Actuators, A: Physical. 2015;229:172-81. https://doi.org/10.1016/j.sna.2015.04.002LeroyJDalmayCLandoulsiAMicrofluidic biosensors for microwave dielectric spectroscopySensors and Actuators, A: Physical201522917281https://doi.org/10.1016/j.sna.2015.04.00210.1016/j.sna.2015.04.002Search in Google Scholar

Gun L, Ning D, Liang Z. Effective Permittivity of Biological Tissue: Comparison of Theoretical Model and Experiment. Mathematical Problems in Engineering. 2017;2017.GunLNingDLiangZEffective Permittivity of Biological Tissue: Comparison of Theoretical Model and ExperimentMathematical Problems in Engineering2017201710.1155/2017/7249672Search in Google Scholar

Ocera A, Dionigi M, Fratticcioli E, Sorrentino R. A novel technique for complex permittivity measurement based on a planar four-port device. IEEE Transactions on Microwave Theory and Techniques. 2006;54(6). https://doi.org/10.1109/TMTT.2006.872914OceraADionigiMFratticcioliESorrentinoRA novel technique for complex permittivity measurement based on a planar four-port deviceIEEE Transactions on Microwave Theory and Techniques2006546https://doi.org/10.1109/TMTT.2006.87291410.1109/EUMC.2005.1608871Search in Google Scholar

Marzec E, Warchoł W. Dielectric properties of a protein-water system in selected animal tissues. Bioelectrochemistry. 2005;65(2):89-94. https://doi.org/10.1016/j.bioelechem.2004.10.001MarzecEWarchołWDielectric properties of a protein-water system in selected animal tissues. Bioelectrochemistry20056528994https://doi.org/10.1016/j.bioelechem.2004.10.00110.1016/j.bioelechem.2004.10.00115713558Search in Google Scholar

Dai T, Adler A. In vivo blood characterization from bioimpedance spectroscopy of blood pooling. IEEE Transactions on Instrumentation and Measurement. 2009;58(11):3831-8. https://doi.org/10.1109/TIM.2009.2020836DaiTAdlerAIn vivo blood characterization from bioimpedance spectroscopy of blood poolingIEEE Transactions on Instrumentation and Measurement2009581138318https://doi.org/10.1109/TIM.2009.202083610.1109/TIM.2009.2020836Search in Google Scholar

Bagnaninchi PO, Dikeakos M, Veres T, Tabrizian M. Towards on-line monitoring of cell growth in microporous scaffolds: Utilization and interpretation of complex permittivity measurements. Biotechnology & Bioengineering. 2003;84(3):343-50. https://doi.org/10.1002/bit.10770BagnaninchiPODikeakosMVeresTTabrizianMTowards on-line monitoring of cell growth in microporous scaffolds: Utilization and interpretation of complex permittivity measurementsBiotechnology & Bioengineering200384334350https://doi.org/10.1002/bit.1077010.1002/bit.1077012968288Search in Google Scholar

Bagnaninchi PO, Dikeakos M, Veres T, Tabrizian M. Complex permittivity measurement as a new noninvasive tool for monitoring in vitro tissue engineering and cell signature through the detection of cell proliferation, differentiation, and pretissue formation. IEEE Transactions on Nanobioscience. 2004;3(4):243-50. https://doi.org/10.1109/TNB.2004.837901BagnaninchiPODikeakosMVeresTTabrizianMComplex permittivity measurement as a new noninvasive tool for monitoring in vitro tissue engineering and cell signature through the detection of cell proliferation, differentiation, and pretissue formationIEEE Transactions on Nanobioscience20043424350https://doi.org/10.1109/TNB.2004.83790110.1109/TNB.2004.83790115631135Search in Google Scholar

Vorlicek J, Vrba J. Coaxial Probe for Measuring Complex Permittivity of Biological Tissues. Radioterapie. 2009:59.VorlicekJVrbaJCoaxial Probe for Measuring Complex Permittivity of Biological TissuesRadioterapie200959Search in Google Scholar

Frese J, Hrdlicka L, Mertens ME, Rongen L, Koch S, Schuster P, et al. Non-invasive Imaging of Tissue-Engineered Vascular Endothelium with Iron Oxide Nanoparticles. Biomed Tech. 2012;57. https://doi.org/10.1515/bmt-2012-4472FreseJHrdlickaLMertensMERongenLKochSSchusterPet alNon-invasive Imaging of Tissue-Engineered Vascular Endothelium with Iron Oxide NanoparticlesBiomed Tech201257https://doi.org/10.1515/bmt-2012-447210.1515/bmt-2012-4472Search in Google Scholar

Jaatinen L, Sippola L, Kellomaki M, Miettinen S, Suuronen R, Hyttinen J. Bioimpedance Measurement Setup for the Assessment of Viability and Number of Human Adipose Stem Cells Cultured as Mono layers. In: Dossel O, Schlegel WC, editors. World Congress on Medical Physics and Biomedical Engineering, Vol 25, Pt 10: Biomaterials, Cellular and Tissue Engineering, Artificial Organs. IFMBE Proceedings. 25. New York: Springer; 2009. p. 286-288.JaatinenLSippolaLKellomakiMMiettinenSSuuronenRHyttinenJBioimpedance Measurement Setup for the Assessment of Viability and Number of Human Adipose Stem Cells Cultured as Mono layersDosselOSchlegelWCWorld Congress on Medical Physics and Biomedical Engineering, Vol 25, Pt 10: Biomaterials, Cellular and Tissue Engineering, Artificial Organs. IFMBE Proceedings. 25New YorkSpringer2009p28628810.1007/978-3-642-03900-3_83Search in Google Scholar

Aziz AUR, Geng C, Fu M, Yu X, Qin K, Liu B. The Role of Microfluidics for Organ on Chip Simulations: Review. Bioengineering. 2017;4(39).AzizAURGengCFuMYuXQinKLiuBThe Role of Microfluidics for Organ on Chip Simulations: ReviewBioengineering201743910.3390/bioengineering4020039559045828952518Search in Google Scholar