Cite

1. Bryers JD. Medical biofilms. Biotechnology and Bioengineering. 2008;100:1-18.10.1002/bit.21838270631218366134Search in Google Scholar

2. Michel V, Doi Y, Hellwich K, et al. Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure and Applied Chemistry. 2012;8:377-410.10.1351/PAC-REC-10-12-04Search in Google Scholar

3. Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nature Reviews Microbiology. 2004;2:95-108.10.1038/nrmicro82115040259Search in Google Scholar

4. Wu H, Moser C, Wang HZ, et al. Strategies for combating bacterial biofilm infections. Int J Oral Sci. 2015;23;7:1-7.10.1038/ijos.2014.65481753325504208Search in Google Scholar

5. Auler ME, Morreira D, Rodrigues FF, et al. Biofilm formation on intrauterine devices in patients with recurrent vulvovaginal candidiasis. Medical Mycology. 2009;48:211-216.10.3109/1369378090285662620055746Search in Google Scholar

6. Ciofu O, Rojo-Molinero E, Macià MD, et al. Antibiotic treatment of biofilm infections. APMIS. 2017;125:304-319.10.1111/apm.1267328407419Search in Google Scholar

7. Rabin N, Zheng Y, Opoku-Temeng C, et al. Agents that inhibit bacterial biofilm formation. Future Med Chem. 2015;7:647-671.10.4155/fmc.15.725921403Search in Google Scholar

8. Worlitzsch D, Tarran R, Ulrich M, et al. Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest. 2002;109:317-325.10.1172/JCI0213870Search in Google Scholar

9. Jensen PO, Briales A, Brochmann RP, et al. Formation of hydroxyl radicals contributes to the bactericidal activity of ciprofloxacin against Pseudomonas aeruginosa biofilms. Pathog Dis. 2014;70:440-443.10.1111/2049-632X.1212024376174Search in Google Scholar

10. Cao B, Christophersen L, Thomsen K, et al. Antibiotic penetration and bacterial killing in a Pseudomonas aeruginosa biofilm model. J Antimicrob Chemother. 2015;70:2057-2063.10.1093/jac/dkv05825786481Search in Google Scholar

11. Kadurugamuwa JL, Sin L, Albert E, et al. Direct continuous method for monitoring biofilm infection in a mouse model. Infect Immun. 2003;71:882-890.10.1128/IAI.71.2.882-890.200314536212540570Search in Google Scholar

12. Rupp ME, Ulphani JS, Fey PD, et al. Characterization of the importance of polysaccharide intercellular adhesin/hemagglutinin of Staphylococcus epidermidis in the pathogenesis of biomaterial-based infection in a mouse foreign body infection model. Infect Immun. 1999;67:2627-2632.10.1128/IAI.67.5.2627-2632.199911601510225932Search in Google Scholar

13. Hirano L, Bayer AS. Beta-Lactam-beta-lactamase-inhibitor combinations are active in experimental endocarditis caused by beta-lactamase-producing oxacillin-resistant staphylococci. Antimicrob Agents Chemother. 1991;35:685-690.10.1128/AAC.35.4.6852450792069374Search in Google Scholar

14. Roche ED, Renick PJ, Tetens SP, et al. Increasing the presence of biofilm and healing delay in a porcine model of MRSA-infected wounds. Wound Repair Regen. 2012;20:537-543.10.1111/j.1524-475X.2012.00808.x22672311Search in Google Scholar

15. Johansen HK, Høiby N. Novel mouse model of chronic Pseudomonas aeruginosa lung infection mimicking cystic fibrosis. Infect Immun. 2005;73:2504-2514.10.1128/IAI.73.4.2504-2514.2005108739915784597Search in Google Scholar

16. de Lima Pimenta A, Chiaradia-Delatorre LD, Mascarello A, et al. Synthetic organic compounds with potential for bacterial biofilm inhibition, a path for the identification of compounds interfering with quorum sensing. Int J Antimicrob Agents. 2013;42:519-523.10.1016/j.ijantimicag.2013.07.00624016798Search in Google Scholar

17. Balaban N, Cirioni O, Giacometti A, et al. Treatment of Staphylococcus aureus biofilm infection by the quorum-sensing inhibitor RIP. Antimicrob Agents Chemother. 2007;51:2226-2229.10.1128/AAC.01097-06189138317371825Search in Google Scholar

18. Francolini I, Norris P, Piozzi A, et al. Usnic acid, a natural antimicrobial agent able to inhibit bacterial biofilm formation on polymer surfaces. Antimicrob Agents Chemother. 2004;48:4360-4365.10.1128/AAC.48.11.4360-4365.200452540515504865Search in Google Scholar

19. Rasamiravaka T, Labtani Q, Duez P, et al. The formation of biofilms by Pseudomonas aeruginosa: a review of the natural and synthetic compounds interfering with control mechanisms. Biomed Res Int. 2015:759348.10.1155/2015/759348438329825866808Search in Google Scholar

20. Rasmussen TB, Skindersoe ME, Bjarnsholt T, et al. Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiology. 2005;151:1325-1340.10.1099/mic.0.27715-015870443Search in Google Scholar

21. Roy V, Meyer MT, Smith JA, et al. AI-2 analogs and antibiotics: a synergistic approach to reduce bacterial biofilms. Appl Microbiol Biotechnol. 2013;97:2627-2638.10.1007/s00253-012-4404-623053069Search in Google Scholar

22. Brackman G, Cos P, Maes L, et al. Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo. Antimicrob Agents Chemother. 2001;55:2655-2661.10.1128/AAC.00045-11310140921422204Search in Google Scholar

23. Zeng X, Liu X, Bian J, et al. Synergistic effect of 14-alpha-lipoyl andrographolide and various antibiotics on the formation of biofilms and production of exopolysaccharide and pyocyanin by Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2011;55:3015-3017.10.1128/AAC.00575-10310138821422201Search in Google Scholar

24. Jakobsen TH, van Gennip M, Phipps RK, et al. Ajoene, a sulfur-rich molecule from garlic, inhibits genes controlled by quorum sensing. Antimicrob Agents Chemother. 2012;56:2314-2325.10.1128/AAC.05919-11334666922314537Search in Google Scholar

25. Yang JY, Della-Fera MA, Nelson-Dooley C, et al. Molecular mechanisms of apoptosis induced by ajoene in 3T3-L1 adipocytes. Obesity. 2006;14:388-397.10.1038/oby.2006.5216648609Search in Google Scholar

26. Jakobsen TH, Warming AN, Vejborg RM, et al. A broad range quorum sensing inhibitor working through sRNA inhibition. Sci Rep. 2017;7:9857.10.1038/s41598-017-09886-8557534628851971Search in Google Scholar

27. Rendueles O, Kaplan JB, Ghigo JM. Antibiofilm polysaccharides. Environmental Microbiol. 2013;15:334-346.10.1111/j.1462-2920.2012.02810.x350268122730907Search in Google Scholar

28. Roy R, Tiwari M, Donelli G, et al. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence. 2018;9:522-554.10.1080/21505594.2017.1313372595547228362216Search in Google Scholar

29. Durig A, Kouskoumvekaki I, Vejborg RM, et al. Chemoinformatics-assisted development of new anti-biofilm compounds. Applied Microbiol Biotechnol. 2010;87:309-317.10.1007/s00253-010-2471-020204615Search in Google Scholar

30. Ojha AK, Baughn AD, Sambandan D, et al. Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria. Mol Microbiol. 2008;69:164-174.10.1111/j.1365-2958.2008.06274.x261518918466296Search in Google Scholar

31. Artini M, Romano C, Manzoli L, et al. Staphylococcal IgM ELISA for the detection of periprosthetic joint infections. J Clin Microbiol. 2011;49:423-425.10.1128/JCM.01836-10302041521068292Search in Google Scholar

eISSN:
2501-8132
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, other, Internal Medicine, Surgery, Emergency Medicine and Intensive-Care Medicine