Cite

Alvarez, P. L. J., Micor, J. R. L., Angelia, M. R. N., Brescia, T. K., Symczak, K. M., Mojica, E. R. E. (2021). Spectroscopic discrimination and characterization of bee propolis from the Philippines. Philippine Journal of Science, 150(3), 655-662. https://doi.org/10.56899/150.03.06 Search in Google Scholar

Bocian, A., Ciszkowicz, E., Hus, K. K., Buczkowicz, J., Lecka-Szlachta, K., Pietrowska, M., … Legáth, J. (2020). Antimicrobial activity of protein fraction from Naja ashei venom against Staphylococcus epidermidis. Molecules, 25(2). https://doi.org/10.3390/molecules25020293 Search in Google Scholar

Calegari, M. A., Ayres, B. B., dos Santos Tonial, L. M., de Alencar, S. M., Oldoni, T. L. C. (2020). Fourier transform near infrared spectroscopy as a tool for predicting antioxidant activity of propolis. Journal of King Saud University - Science, 32(1), 784-790. https://doi.org/10.1016/j.jksus.2019.02.006 Search in Google Scholar

Dias, L. G., Pereira, A. P., Estevinho, L. M. (2012). Comparative study of different Portuguese samples of propolis: Pollinic, sensorial, physicochemical, microbiological characterization and antibacterial activity. Food and Chemical Toxicology, 50(12), 4246-4253. https://doi.org/10.1016/j.fct.2012.08.056 Search in Google Scholar

Dimkić, I., Ristivojević, P., Janakiev, T., Berić, T., Trifković, J., Milojković-Opsenica, D., Stanković, S. (2016). Phenolic profiles and antimicrobial activity of various plant resins as potential botanical sources of Serbian propolis. Industrial Crops and Products, 94, 856-871. https://doi.org/10.1016/j.indcrop.2016.09.065 Search in Google Scholar

Dogan, M., Silici, S., Saraymen, R., Ilhan, I. O. (2006). Element content of propolis from different regions of Turkey. Acta Alimentaria, 35(1), 127-130. https://doi.org/10.1556/AAlim.35.2006.1.14 Search in Google Scholar

Dvykaliuk, R., Adamchuk, L., Antoniv, A., Bal-Prylypko, L. (2023). Development of safety and quality of propolis as a food raw material. Animal Science and Food Technology, 14(1). https://doi.org/10.31548/animal.1.2023.26 Search in Google Scholar

Dżugan, M., Miłek, M., Kielar, P., Stępień, K., Sidor, E., Bocian, A. (2022). SDS-PAGE protein and HPTLC polyphenols profiling as a promising tool for authentication of goldenrod honey. Foods, 11(16), 1-17. https://doi.org/10.3390/foods11162390 Search in Google Scholar

Fernández-Calderón, M. C., Navarro-Pérez, M. L., Blanco-Roca, M. T., Gómez-Navia, C., Pérez-Giraldo, C., Vadillo-Rodríguez, V. (2020). Chemical profile and antibacterial activity of a novel Spanish propolis with new polyphenols also found in olive oil and high amounts of flavonoids. Molecules, 25(15). https://doi.org/10.3390/molecules25153318 Search in Google Scholar

Ferreira, M. A., Machado, C. S., Santos, P. C. dos, Sodré, G. da S., Carvalho, C. A. L. de, Evangelista-Barreto, N. S., … Estevinho, L. M. (2021). Influence of handling procedure on the microbiological quality of propolis. Produtos Naturais e Suas Aplicações: Da Comunidade Para o Laboratório, 36-51. https://doi.org/10.37885/210303991 Search in Google Scholar

Formicki, G., Greń, A., Stawarz, R., Zyśk, B., Gał, A. (2013). Metal content in honey, propolis, wax, and bee pollen and implications for metal pollution monitoring. Polish Journal of Environmental Studies, 22(1), 99-106. Search in Google Scholar

Galeotti, F., Maccari, F., Fachini, A., Volpi, N. (2018). Chemical composition and antioxidant activity of propolis prepared in different forms and in different solvents useful for finished products. Foods, 7(3). https://doi.org/10.3390/foods7030041 Search in Google Scholar

González-Martín, M. I., Escuredo, O., Revilla, I., Vivar-Quintana, A. M., Carmen Coello, M., Riocerezo, C. P., Moncada, G. W. (2015). Determination of the mineral composition and toxic element contents of propolis by near infrared spectroscopy. Sensors (Switzerland), 15(11), 27854-27868. https://doi.org/10.3390/s151127854 Search in Google Scholar

Grassi, G., Capasso, G., Gambacorta, E., Perna, A. M. (2023). Chemical and functional characterization of propolis collected from different areas of South Italy. Foods, 12(18), 1-10. https://doi.org/10.3390/foods12183481 Search in Google Scholar

Grecka, K., Kuś, P. M., Okińczyc, P., Worobo, R. W., Walkusz, J., Szweda, P. (2019). The anti-staphylococcal potential of ethanolic Polish propolis extracts. Molecules, 24(9), 1-24. https://doi.org/10.3390/molecules24091732 Search in Google Scholar

Hogendoorn, E. A., Sommeijer, M. J., Vredenbregt, M. J. (2013). Alternative method for measuring beeswax content in propolis from the Netherlands. Journal of Apicultural Science, 57(2), 81-90. https://doi.org/10.2478/jas-2013-0019 Search in Google Scholar

Horváth, G., Farkas, Á., Papp, N., Bencsik, T., Ács, K., Gyergyák, K., Kocsis, B. (2016). Chapter 3 -Natural substances from higher plants as potential anti-MRSA agents. Studies in Natural Products Chemistry, 47, 63-110. https://doi.org/10.1016/B978-0-444-63603-4.00003-6 Search in Google Scholar

Hossain, R., Quispe, C., Khan, R. A., Saikat, A. S. M., Ray, P., Ongalbek, D., … Cho, W. C. (2022). Propolis: An update on its chemistry and pharmacological applications. Chinese Medicine (United Kingdom), 17(1). https://doi.org/10.1186/s13020-022-00651-2 Search in Google Scholar

Karcz, D., Starzak, K., Ciszkowicz, E., Lecka-Szlachta, K., Kamiński, D., Creaven, B., … Matwijczuk, A. (2022). Design, spectroscopy, and assessment of cholinesterase inhibition and antimicrobial activities of novel coumarin-thiadiazole hybrids. International Journal of Molecular Sciences, 23(11). https://doi.org/10.3390/ijms23116314 Search in Google Scholar

Kekeçoğlu, M., Keskin, M., Birinci, C., Birinci, E., Kolayli, S. (2021). Effects of honey bee race and season on propolis composition. Tarım Bilimleri Dergisi, 27(3), 292-297. https://doi.org/10.15832/ankutbd.619996 Search in Google Scholar

Kulichová, K., Sokol, J., Nemeček, P., Maliarová, M., Maliar, T., Havrlentová, M., Kraic, J. (2019). Phenolic compounds and biological activities of rye (Secale cereale L.) grains. Open Chemistry, 17(1), 988-999. Search in Google Scholar

Kurek-Górecka, A., Rzepecka-Stojko, A., Górecki, M., Stojko, J., Sosada, M., Świerczek-Ziba, G. (2014). Structure and antioxidant activity of polyphenols derived from propolis. Molecules, 19(1), 78-101. https://doi.org/10.3390/molecules19010078 Search in Google Scholar

Miłek, M., Ciszkowicz, E., Lecka-Szlachta, K., Miłoś, A., Zaguła, G., Pasternakiewicz, A., Dżugan, M. (2022a). Mineral composition, antioxidant, anti-urease, and antibiofilm potential of Juglans regia leaves and unripe fruits. Acta Universitatis Cibiniensis. Series E: Food Technology, 26(1), 69-82. https://doi.org/10.2478/aucft-2022-0006 Search in Google Scholar

Miłek, M., Ciszkowicz, E., Tomczyk, M., Sidor, E., Zaguła, G., Lecka-Szlachta, K., … Dżugan, M. (2022b). Poplar-type Polish propolis considering local flora diversity breast cancer cells. Molecules, 27(725). Search in Google Scholar

Moreno, A. I., Orozco, Y., Ocampo, S., Malagón, S., Ossa, A., Peláez-Vargas, A., … Garcia, C. (2023). Effects of propolis impregnation on polylactic acid (PLA) scaffolds loaded with wollastonite particles against Staphylococcus aureus, Staphylococcus epidermidis, and their coculture for potential medical devices. Polymers, 15(12), 1-21. https://doi.org/10.3390/polym15122629 Search in Google Scholar

Moţ, A. C., Silaghi-Dumitrescu, R., Sârbu, C. (2011). Rapid and effective evaluation of the antioxidant capacity of propolis extracts using DPPH bleaching kinetic profiles, FT-IR and UV-vis spectroscopic data. Journal of Food Composition and Analysis, 24(4-5), 516-522. DOI: 10.1016/j.jfca.2010.11.006 Search in Google Scholar

Nichitoi, M. M., Josceanu, A. M., Isopescu, R. D., Isopencu, G. O., Geana, E. I., Ciucure, C. T., Lavric, V. (2021). Polyphenolics profile effects upon the antioxidant and antimicrobial activity of propolis extracts. Scientific Reports, 11(1), 1-12. https://doi.org/10.1038/s41598-021-97130-9 Search in Google Scholar

Okińczyc, P., Szumny, A., Szperlik, J., Kulma, A., Franiczek, R., Żbikowska, B., … Sroka, Z. (2018). Profile of polyphenolic and essential oil composition of polish propolis, black poplar and aspens buds. Molecules, 23(6), 1-18. https://doi.org/10.3390/molecules23061262 Search in Google Scholar

Okińczyc, P., Widelski, J., Szperlik, J., Żuk, M., Mroczek, T., Skalicka-Woźniak, K., … Kuś, P. M. (2021). Article impact of plant origin on eurasian propolis on phenolic profile and classical antioxidant activity. Biomolecules, 11(1), 1-18. https://doi.org/10.3390/biom11010068 Search in Google Scholar

Oliveira, R. N., Mancini, M. C., de Oliveira, F. C. S., Passos, T. M., Quilty, B., Thiré, R. M. da S. M., McGuinness, G. B. (2016). Análise por FTIR e quantificação de fenóis e flavonóides de cinco produtos naturais disponíveis comercialmente utilizados no tratamento de feridas. Revista Materia, 21(3), 767-779. https://doi.org/10.1590/S1517-707620160003.0072 Search in Google Scholar

PN-R-78891 (1996). Propolis - kit pszczeli. Warszawa: Polski Komitet Normalizacyjny Search in Google Scholar

Pobiega, K., Kot, A. M., Przybył, J. L., Synowiec, A., Gniewosz, M. (2023). Comparison of the chemical composition and antioxidant properties of propolis from urban apiaries. Molecules, 28(18). https://doi.org/10.3390/molecules28186744 Search in Google Scholar

Przybyłek, I., & Karpiński, T. M. (2019). Antibacterial properties of propolis. Molecules, 24(11), 11-13. https://doi.org/10.3390/molecules24112047 Search in Google Scholar

Rashid, N. A., Mohammed, S. N. F., Abd Halim, S. A. S., Ghafar, N. A., Jalil, N. A. A. (2022). Therapeutic potential of honey and propolis on ocular disease. Pharmaceuticals, 15(11), 1-26. https://doi.org/10.3390/ph15111419 Search in Google Scholar

Ristivojević, P., Trifković, J., Andrić, F., Milojković-Opsenica, D. (2015). Poplar-type propolis: Chemical composition, botanical origin and biological activity. Natural Product Communications, 10(11), 1869-1876. https://doi.org/10.1177/1934578x1501001117 Search in Google Scholar

Socha, R., Gałkowska, D., Bugaj, M., Juszczak, L. (2015). Phenolic composition and antioxidant activity of propolis from various regions of Poland. Natural Product Research, 29(5), 416-422. https://doi.org/10.1080/14786419.2014.949705 Search in Google Scholar

Svečnjak, L., Marijanović, Z., Okińczyc, P., Kuś, P. M., Jerković, I. (2020). Mediterranean propolis from the adriatic sea islands as a source of natural antioxidants: Comprehensive chemical biodiversity determined by GC-MS, ftiratr, UHPLC-DAD-QQTOFMS, DPPH and FRAP assay. Antioxidants, 9(4), 337. https://doi.org/10.3390/antiox9040337 Search in Google Scholar

Tosic, S., Stojanovic, G., Mitic, S., Pavlovic, A., Alagic, S. (2017). Mineral composition of selected serbian propolis samples. Journal of Apicultural Science, 61(1), 5-15. https://doi.org/10.1515/JAS-2017-0001 Search in Google Scholar

Vakhonina, E.A., Lapynina1 E.P., Lizunova1, A., S. (2021). Study of toxic elements in propolis, IOP Conference Series: Earth and Environtal Science, 845. 012122. DOI: 10.1088/1755-1315/845/1/012122 Search in Google Scholar

Vargas-Sánchez, R. D., Torrescano-Urrutia, G. R., Sánchez-Escalante, A. (2020). Physicochemical and microbiological characterization, and evaluation of the antimicrobial and antioxidant activity of propolis produced in two seasons and two areas of the eastern edge of the Sonoran Desert. Biotecnia, 22(3), 46-52. https://doi.org/10.18633/biotecnia.v22i3.1185 Search in Google Scholar

Woźniak, M., Sip, A., Mrówczyńska, L., Broniarczyk, J., Waśkiewicz, A., Ratajczak, I. (2023). Biological activity and chemical composition of propolis from various regions of Poland. Molecules, 28(1), 141. https://doi.org/10.3390/molecules28010141 Search in Google Scholar

eISSN:
2299-4831
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, Zoology, other