Cite

Aceto J, Nourizadeh-Lillabadi R, Bradamante S, Maier JA, Alestrom P, van Loon JJ, Muller M (2016) Effects of microgravity simulation on zebrafish transcriptomes and bone physiology exposure starting at 5 days post fertilization. npj Microgravity2: 16010AcetoJNourizadeh-LillabadiRBradamanteSMaierJAAlestromPvan LoonJJMullerM2016Effects of microgravity simulation on zebrafish transcriptomes and bone physiology exposure starting at 5 days post fertilizationnpj Microgravity21601010.1038/npjmgrav.2016.10551551528725727Search in Google Scholar

Alwood JS, Ronca AE, Mains RC, Shelhamer MJ, Smith JD, Goodwin TJ (2017) From the bench to exploration medicine: NASA life sciences translational research for human exploration and habitation missions. npj Microgravity3: 5AlwoodJSRoncaAEMainsRCShelhamerMJSmithJDGoodwinTJ2017From the bench to exploration medicine: NASA life sciences translational research for human exploration and habitation missionsnpj Microgravity3510.1038/s41526-016-0002-8546023628649627Search in Google Scholar

Bagley JR, Murach KA, Trappe SW (2012) Microgravity-induced fiber type shift in human skeletal muscle. Gravitational and Space Biology26(1): 34–40BagleyJRMurachKATrappeSW2012Microgravity-induced fiber type shift in human skeletal muscleGravitational and Space Biology2613440Search in Google Scholar

Blaser RE, Chadwick L, McGinnis GC (2010) Behavioral measures of anxiety in zebrafish (Danio rerio). Behavioral Brain Research208: 56–62BlaserREChadwickLMcGinnisGC2010Behavioral measures of anxiety in zebrafish (Danio rerio)Behavioral Brain Research208566210.1016/j.bbr.2009.11.00919896505Search in Google Scholar

Blue Origin (2017) New Shepard Payload User's Guide for Research and Education Missions. NSPM-MA0002-C Rev C. Available via request at https://www.blueorigin.com/Blue Origin2017New Shepard Payload User's Guide for Research and Education MissionsNSPM-MA0002-C Rev C. Available via request at https://www.blueorigin.com/Search in Google Scholar

Champagne DL, Hoefnagels CC, de Kloet RE, Richardson MK (2010) Translating rodent behavioral repertoire to zebrafish (Danio rerio): relevance for stress research. Behavioral Brain Research214: 332–342ChampagneDLHoefnagelsCCde KloetRERichardsonMK2010Translating rodent behavioral repertoire to zebrafish (Danio rerio): relevance for stress researchBehavioral Brain Research21433234210.1016/j.bbr.2010.06.00120540966Search in Google Scholar

Chan SS, Williamson T (2018) Detection of mitochondrial toxicity using zebrafish. In Mitochondrial Dysfunction Caused by Drugs and Environmental Toxicants, Y. Will and J.A. Dykens (eds), pp. 323–346. WileyChanSSWilliamsonT2018Detection of mitochondrial toxicity using zebrafishInMitochondrial Dysfunction Caused by Drugs and Environmental ToxicantsWillY.DykensJ.A.(eds),323346Wiley10.1002/9781119329725.ch21Search in Google Scholar

Chatani M, Mantoku A, Takeyama K, Abduweli D, Sugamori Y, Aoki K, Ohya K, Suzuki H, Uchida S, Sakimura T, Kono Y, Tanigaki F, Shirakawa M, Takano Y, Kudo A (2015) Microgravity promotes osteoclast activity in medaka fish reared at the international space station. Scientific Reports5: 14172ChataniMMantokuATakeyamaKAbduweliDSugamoriYAokiKOhyaKSuzukiHUchidaSSakimuraTKonoYTanigakiFShirakawaMTakanoYKudoA2015Microgravity promotes osteoclast activity in medaka fish reared at the international space stationScientific Reports51417210.1038/srep14172458567626387549Search in Google Scholar

Chatani M, Morimoto H, Takeyama K, Mantoku A, Tanigawa N, Kubota K, Suzuki H, Uchida S, Tanigaki F, Shirakawa M, Gusev O, Sychev V, Takano Y, Itoh T, Kudo A (2016) Acute transcriptional up-regulation scpecific to osteoblasts/osteoclasts in medaka fish immediately after exposure to microgravity. Scientific Reports6: 39545ChataniMMorimotoHTakeyamaKMantokuATanigawaNKubotaKSuzukiHUchidaSTanigakiFShirakawaMGusevOSychevVTakanoYItohTKudoA2016Acute transcriptional up-regulation scpecific to osteoblasts/osteoclasts in medaka fish immediately after exposure to microgravityScientific Reports63954510.1038/srep39545517788228004797Search in Google Scholar

DiMauro S (2004) Mitochondrial diseases. Biochimica et Biophysica Acta1658: 80–88DiMauroS2004Mitochondrial diseasesBiochimica et Biophysica Acta1658808810.1007/978-3-642-74415-0_15Search in Google Scholar

Facciol A, Tran S, Gerlai R (2017) Re-examining the factors affecting choice in the light-dark preference test in zebrafish. Behavioral Brain Research327: 21–28FacciolATranSGerlaiR2017Re-examining the factors affecting choice in the light-dark preference test in zebrafishBehavioral Brain Research327212810.1016/j.bbr.2017.03.04028359882Search in Google Scholar

Fitts RH, Riley DR, Widrick JJ (2000) Physiology of a microgravity environment invited review: microgravity and skeletal muscle. Journal of Applied Physiology (1985)89: 823–839FittsRHRileyDRWidrickJJ2000Physiology of a microgravity environment invited review: microgravity and skeletal muscleJournal of Applied Physiology (1985)8982383910.1152/jappl.2000.89.2.82310926670Search in Google Scholar

Fitts RH, Trappe SW, Costill DL, Gallagher PM, Creer AC, Colloton PA, Peters JR, Romatowski JG, Bain JL, Riley DA (2010) Prolonged space flight-induced alterations in the structure and function of human skeletal muscle fibres. Journal of Physiology588: 3567–3592FittsRHTrappeSWCostillDLGallagherPMCreerACCollotonPAPetersJRRomatowskiJGBainJLRileyDA2010Prolonged space flight-induced alterations in the structure and function of human skeletal muscle fibresJournal of Physiology5883567359210.1113/jphysiol.2010.188508Search in Google Scholar

Gerlai R, Lahav M, Guo S, Rosenthal A (2000) Drinks like a fish: zebra fish (Danio rerio) as a behavior genetic model to study alcohol effects. Pharmacology Biochemistry and Behavior67: 773–782GerlaiRLahavMGuoSRosenthalA2000Drinks like a fish: zebra fish (Danio rerio) as a behavior genetic model to study alcohol effectsPharmacology Biochemistry and Behavior6777378210.1016/S0091-3057(00)00422-6Search in Google Scholar

Girdhar K, Gruebele M, Chemla YR (2015) The behavioral space of zebrafish locomotion and its neural network analog. PLOS One10: e0128668GirdharKGruebeleMChemlaYR2015The behavioral space of zebrafish locomotion and its neural network analogPLOS One10e012866810.1371/journal.pone.0128668448910626132396Search in Google Scholar

Gopalakrishnan R, Genc KO, Rice AJ, Lee SM, Evans HJ, Maender CC, Ilaslan H, Cavanagh PR (2010) Muscle volume, strength, endurance, and exercise loads during 6-month missions in space. Aviation, Space, and Environmental Medicine81: 91–102GopalakrishnanRGencKORiceAJLeeSMEvansHJMaenderCCIlaslanHCavanaghPR2010Muscle volume, strength, endurance, and exercise loads during 6-month missions in spaceAviation, Space, and Environmental Medicine819110210.3357/ASEM.2583.201020131648Search in Google Scholar

Hodkinson DP, Anderton AR, Posselt NB, Fong JK (2017) An overview of space medicine. British Journal of Anaesthesia119 (S1): i143–i153HodkinsonDPAndertonARPosseltNBFongJK2017An overview of space medicineBritish Journal of Anaesthesia119S1i143i15310.1093/bja/aex33629161391Search in Google Scholar

Ijiri K (1995) Fish mating experiment in space - what it aimed at and how it was prepared. Biological Sciences in Space9: 3–16IjiriK1995Fish mating experiment in space - what it aimed at and how it was preparedBiological Sciences in Space931610.2187/bss.9.311541873Search in Google Scholar

Ingebretson JJ, Masino MA (2013) Quantification of locomotor activity in larval zebrafish: considerations for the design of high-throughput behavioral studies. Frontiers in Neural Circuits7: 109IngebretsonJJMasinoMA2013Quantification of locomotor activity in larval zebrafish: considerations for the design of high-throughput behavioral studiesFrontiers in Neural Circuits710910.3389/fncir.2013.00109367713723772207Search in Google Scholar

Laizé V, Gavaia PJ, Cancela ML (2014) Fish: a suitable system to model human bone disorders and discovery drugs with osteogenic or osteotoxic activities. Drug Discovery Today: Diseases Models13: 29–37LaizéVGavaiaPJCancelaML2014Fish: a suitable system to model human bone disorders and discovery drugs with osteogenic or osteotoxic activitiesDrug Discovery Today: Diseases Models13293710.1016/j.ddmod.2014.08.001Search in Google Scholar

LeBlanc A, Lin C, Shackelford L, Sinitsyn V, Evans H, Belichenko O, Schenkman B, Kozlovskaya I, Oganov V, Bakulin A, Hedrick T, Feeback D (2000) Muscle volume, MRI relaxation times (T2), and body composition after spaceflight. Journal of Applied Physiology (1985)89: 2158–64LeBlancALinCShackelfordLSinitsynVEvansHBelichenkoOSchenkmanBKozlovskayaIOganovVBakulinAHedrickTFeebackD2000Muscle volume, MRI relaxation times (T2), and body composition after spaceflightJournal of Applied Physiology (1985)8921586410.1152/jappl.2000.89.6.215811090562Search in Google Scholar

Lee J, Freeman LJ (2014) Zebrafish as a model for developmental neurotoxicity assessment: the application of the zebrafish in defining the effects of arsenic, methylmercury, or lead on early neurodevelopment. Toxics 2014 2(3): 464–495LeeJFreemanLJ2014Zebrafish as a model for developmental neurotoxicity assessment: the application of the zebrafish in defining the effects of arsenic, methylmercury, or lead on early neurodevelopmentToxics20142346449510.3390/toxics2030464Search in Google Scholar

Liu Y, Carmer R, Zhang G, Venkatraman P, Brown SA, Pang CP, Zhang M, Ma P, Leung YF (2015) Statistical analysis of zebrafish locomotor response. PLOS One10: e0139521LiuYCarmerRZhangGVenkatramanPBrownSAPangCPZhangMMaPLeungYF2015Statistical analysis of zebrafish locomotor responsePLOS One10e013952110.1371/journal.pone.0139521459360426437184Search in Google Scholar

Maximino C, Marques de Brito T, Dias CA, Gouveia A, Morato S (2010) Scototaxis as anxiety-like behavior in fish. Nature Protocols5: 209–216MaximinoCMarques de BritoTDiasCAGouveiaAMoratoS2010Scototaxis as anxiety-like behavior in fishNature Protocols520921610.1038/nprot.2009.22520134420Search in Google Scholar

McKeown KA, Downes GB, Hutson LD (2009) Modular laboratory exercises to analyze the development of zebrafish motor behavior. Zebrafish6: 179–185McKeownKADownesGBHutsonLD2009Modular laboratory exercises to analyze the development of zebrafish motor behaviorZebrafish617918510.1089/zeb.2008.0564276581819537944Search in Google Scholar

Moro-Aguilar R (2014) The new commercial suborbital vehicles: an opportunity for scientific and microgravity research. Microgravity Science and Technology26: 219–227Moro-AguilarR2014The new commercial suborbital vehicles: an opportunity for scientific and microgravity researchMicrogravity Science and Technology2621922710.1007/s12217-014-9378-9Search in Google Scholar

NASA Fact Sheets (n.d.): Atrophy. Available at https://www.nasa.gov/pdf/64249main_ffs_factsheets_hbp_atrophy.pdf__ (Accessed July 8, 2018)NASA Fact Sheets(n.d.):AtrophyAvailable at https://www.nasa.gov/pdf/64249main_ffs_factsheets_hbp_atrophy.pdf__ (Accessed July 8, 2018)Search in Google Scholar

Pletser V, Migeotte PF, Legros JC, Deneyer B, Caron R (2016). The Suborbital Research Association: using suborbital platforms for science and student experiments. Microgravity Science and Technology28(5): 529–544PletserVMigeottePFLegrosJCDeneyerBCaronR2016The Suborbital Research Association: using suborbital platforms for science and student experimentsMicrogravity Science and Technology28552954410.1007/s12217-016-9502-0Search in Google Scholar

Rahn JJ, Bestman JEZ, Josey BJ, Inks ES, Stackley KD, Rogers CE, Chou CJ, Chan SS (2014). Novel vitamin K analogs suppress seizures in zebrafish and mouse models of epilepsy. Neuroscience259: 142–154RahnJJBestmanJEZJoseyBJInksESStackleyKDRogersCEChouCJChanSS2014Novel vitamin K analogs suppress seizures in zebrafish and mouse models of epilepsyNeuroscience25914215410.1016/j.neuroscience.2013.11.040390378824291671Search in Google Scholar

Remus R, Wiens D (2008) The effects hypergravity on the morphology of xenopus embryos. American Journal of Undergraduate Research7(2): 19–26RemusRWiensD2008The effects hypergravity on the morphology of xenopus embryosAmerican Journal of Undergraduate Research72192610.33697/ajur.2008.016Search in Google Scholar

Scott GR, Johnston IA (2012) Temperature during embryonic development has persistent effects on thermal acclimation capacity in zebrafish. Proceedings of the National Academy of Sciences USA109(35): 14247–14252ScottGRJohnstonIA2012Temperature during embryonic development has persistent effects on thermal acclimation capacity in zebrafishProceedings of the National Academy of Sciences USA10935142471425210.1073/pnas.1205012109343517822891320Search in Google Scholar

Serra EL, Medalha CC, Mattioli R (1999) Natural preference of zebrafish (Danio rerio) for a dark environment. Brazilian Journal of Medical and Biological Research32: 1551–1553SerraELMedalhaCCMattioliR1999Natural preference of zebrafish (Danio rerio) for a dark environmentBrazilian Journal of Medical and Biological Research321551155310.1590/S0100-879X199900120001610585639Search in Google Scholar

Sfakianakis DG, Leris I, Kentouri M (2011) Effect of developmental temperature on swimming performance of zebrafish (Danio rerio) juveniles. Environmental Biology of Fishes90: 421SfakianakisDGLerisIKentouriM2011Effect of developmental temperature on swimming performance of zebrafish (Danio rerio) juvenilesEnvironmental Biology of Fishes9042110.1007/s10641-010-9751-5Search in Google Scholar

Stewart A, Kadri F, DiLeo J, Chung KM, Cachat J, Goodspeed J, Suciu C, Roy S, Gaikwad S, Wong K, Elegante M, Elkhayat S, Wu N, Gilder T, Tien D, Grossman L, Tan J, Denmark A, Bartels B, Frank K, Beeson E, Kalueff A (2010). The developing utility of zebrafish in modeling neurobehavioral disorders. International Journal of Comparative Psychology23: 104–120StewartAKadriFDiLeoJChungKMCachatJGoodspeedJSuciuCRoySGaikwadSWongKEleganteMElkhayatSWuNGilderTTienDGrossmanLTanJDenmarkABartelsBFrankKBeesonEKalueffA2010The developing utility of zebrafish in modeling neurobehavioral disordersInternational Journal of Comparative Psychology2310412010.46867/IJCP.2010.23.01.01Search in Google Scholar

Tavares B, Santos Lopes S (2013) The importance of Zebrafish in biomedical research. Acta Medica Portuguesa26: 583–592TavaresBSantos LopesS2013The importance of Zebrafish in biomedical researchActa Medica Portuguesa2658359210.20344/amp.4628Search in Google Scholar

Tomko D, Souza K, Smith J, Mains R, Sato K, Levine H, Quincy C, Mills A, Zeituni A (2016) NASA space biology science plan 2016–2025. Available at https://www.nasa.gov/sites/default/files/atoms/files/16-03-23_sb_plan.pdfTomkoDSouzaKSmithJMainsRSatoKLevineHQuincyCMillsAZeituniA2016NASA space biology science plan 2016–2025Available at https://www.nasa.gov/sites/default/files/atoms/files/16-03-23_sb_plan.pdfSearch in Google Scholar

Trappe S, Costill D, Gallagher P, Creer A, Peters JR, Evans H, Riley DA, Fitts RH (2009) Exercise in space: human skeletal muscle after 6 months aboard the International Space Station. Journal of Applied Physiology (1985)106: 1159–1168TrappeSCostillDGallagherPCreerAPetersJREvansHRileyDAFittsRH2009Exercise in space: human skeletal muscle after 6 months aboard the International Space StationJournal of Applied Physiology (1985)1061159116810.1152/japplphysiol.91578.200819150852Search in Google Scholar

Van Loon JJWA (2016) Centrifuges for microgravity simulation. The reduced gravity paradigm. Frontiers in Astronomy and Space Scences3: 21Van LoonJJWA2016Centrifuges for microgravity simulation. The reduced gravity paradigmFrontiers in Astronomy and Space Scences32110.3389/fspas.2016.00021Search in Google Scholar

Wagner EB, Charles JB, Cuttino CM (2009) Opportunities for research in space life sciences aboard commercial suborbital flights. Aviation, Space, and Environmental Medicine80: 984–986WagnerEBCharlesJBCuttinoCM2009Opportunities for research in space life sciences aboard commercial suborbital flightsAviation, Space, and Environmental Medicine8098498610.3357/ASEM.2589.200919911525Search in Google Scholar

Weichert GF, Floeter C, Meza Artmann AS, Kammann U (2017) Assessing the ecotoxicity of potentially neuorotoxic substance - evaluation of a behavioural parameter in the embryogenesis of Danio rerio. Chemosphere186: 43–50WeichertGFFloeterCMeza ArtmannASKammannU2017Assessing the ecotoxicity of potentially neuorotoxic substance - evaluation of a behavioural parameter in the embryogenesis of Danio rerioChemosphere186435010.1016/j.chemosphere.2017.07.13628772184Search in Google Scholar

Westerfield M (2007) The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio rerio), 5th Edition. Eugene: University of Oregon PressWesterfieldM2007The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio rerio)5th EditionEugeneUniversity of Oregon PressSearch in Google Scholar

Zhou Y, Cattley RT, Cario CL, Bai Q, Burton EA (2014) Quantification of larval zebrafish motor function in multiwell plates using open-source MATLAB applications. Nature Protocols9: 1533–1548ZhouYCattleyRTCarioCLBaiQBurtonEA2014Quantification of larval zebrafish motor function in multiwell plates using open-source MATLAB applicationsNature Protocols91533154810.1038/nprot.2014.094416923324901738Search in Google Scholar

Zienkiewicz A, Barton DA, Porfiri M, di Bernardo M (2015) Data-driven stochastic modelling of zebrafish locomotion. Journal of Mathematical Biology71: 1081–1105ZienkiewiczABartonDAPorfiriMdi BernardoM2015Data-driven stochastic modelling of zebrafish locomotionJournal of Mathematical Biology711081110510.1007/s00285-014-0843-2459835525358499Search in Google Scholar

eISSN:
2332-7774
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other, Materials Sciences, Physics