Cite

Balzter, H., Braun, P.W. & Kohler W. (1998). Cellular automata models for vegetation dynamics. Ecol. Model., 107, 113−125. DO I: 10.1016/S0304-3800(97)00202-0.Search in Google Scholar

Botkin, D.B., Janak, J.F. & Wallis J.R. (1972). Some ecological consequences of a computer model of forest growth. J. Ecol., 60, 849−872. http://www.jstor.org/stable/225857010.2307/2258570Search in Google Scholar

Brzeziecki, B. (1999). Tree stand ecological model. Rules of construction, parameterization, examples of use (in Polish). Warszawa.Search in Google Scholar

Bugmann, H. (1994). On the ecology of mountainous forests in a changing climate: a simulation study. PhD. thesis No. 10638, Swiss Federal Institute of Technology Zurich, Switzerland.Search in Google Scholar

Bugmann, H. (2001). A review of forest gap models. Climatic Change 51. Kluwer Academic Publishers.Search in Google Scholar

Colasanti, R.L. & Grime J.P. (1993). Resource dynamics and vegetation processes: a deterministic model used two-dimensional cellurar automata. Funct. Ecol., 7, 169−176. http://www.jstor.org/stable/238988310.2307/2389883Search in Google Scholar

Dunkerley, D.L. (1999). Banded chenopod shrub lands of arid Australia: modeling responses to inter annual rainfall variability with cellular automata. Ecol. Model., 121, 127−138. DO I: 10.1016/S0304-3800(99)00088-5.Search in Google Scholar

Frąk, R., Kozak, I., Widelska, E. & Kozak H. (2009). Prognosis of landscape changes in the basin of the Bojarski stream with application of CELLAUT model (in Ukrainian). In Ecosystems of upper part of Prut river basin (pp. 246−252). Regional Conference, 15-17. 05. 2009. Lvov: Voroxta.Search in Google Scholar

Gawrońska, G. (2000): An influence of atmospheric pollution upon forests of the Carpathian Region (in Polish). Rocznik Ochrony Środowiska, 2, 195−204.Search in Google Scholar

Hassel, M.P., Comins, H.N. & May R.M. (1991). Spatial structure and chaos in insect population dynamics. Nature, 353, 255−258. DO I: 10.1038/353255a0.Search in Google Scholar

Karafyllidis, I. & Thanailakis A. (1997). A model for predicting forest fire spreading using cellular automata. Ecol. Model., 99, 87−97. DO I: 10.1016/S0304-3800(96)01942-4.Search in Google Scholar

Kozak, I. & Menshutkin V.V. (1999). Computer simulations of forest Ecosystems Dynamics. Biology Bulletin, 26(6), 586−592.Search in Google Scholar

Kozak, I. & Menshutkin V. (2000a). Possibilities of application of computer modelling for prediction of tree stand succesion dynamics on the example of fir-beech tree stand in the Bieszczady Mountains. Forestry (Poland), 3, 113−122.Search in Google Scholar

Kozak, I. & Menshutkin V. (2000b). An investigation of forest succesion in Bieszczady Mountains using a computer models. Folia Forestalica Polonica, Series A - Forestry, 42, 67−81.Search in Google Scholar

Kozak, I. & Menshutkin V. (2001). Prediction of beech forest succesion in Bieszczady Mountains using a computer model. J. For. Sci. (Prague), 47, 333−339.Search in Google Scholar

Kozak, I., Menshutkin, V., Jóźwina, M. & Potaczała G. (2002). Computer simulation of fir forest dynamics in the Bieszczady Mountains in response to climate change. J. For. Sci. (Prague), 48, 425−431.10.17221/11909-JFSSearch in Google Scholar

Kozak, I., Menshutkin, V., Ferchmin, M., Potaczała, G., Jóźwina, M., Kozak, O. & Seńko Z. (2003a). Prognozowanie zmian lasu sosnowego w obszarze ochrony ścisłej Nart w Kampinoskim Parku Narodowym z wykorzystaniem modelu FOR KOM E. Parki Narodowe i Rezerwaty Przyrody, 22(4), 483−497.Search in Google Scholar

Kozak, I., Menshutkin, V., Jóźwina, M. & Potaczała G. (2003b). Modelling of beech forest dynamics in the Bieszczady Mountains in response to climate change. Ekológia (Bratislava), 22(2), 152−161.Search in Google Scholar

Kozak, I., Menshutkin, V.V. & Klekowski R.Z. (2003c). Modeling of landscape elements (in Polish). Lublin: Towarzystwo Naukowe KUL.Search in Google Scholar

Kozak, I., Menshutkin, V., Parpan, V., Shparyk, Yu., Parpan, T., Viter, R., Kozak O. & Seńko Z. (2005). Computer simulations of natural beech forest dynamics in the Boberka river basin in the Ukrainian Beskids. Natural Forests in the Temperate Zone of Europe - Values and Utilization (pp. 121−129). Birmensdorf: Published by Swiss Federal Research Institute.Search in Google Scholar

Kozak, I., Chłódek, D., Zawadzki, A., Kozak, H. & Potaczała G. (2007a). Conversion simulation of spruce stands in the Bieszczady mountains with the aid of FOR KOM E model (in Polish). Leśne Prace Badawcze, 2, 7−26.Search in Google Scholar

Kozak, I., Parpan, V., Potaczała, G., Kozak, H. & Zawadzki A. (2007b). Natural forest regeneration in spruce monocultures in the Ukrainian Beskids - prognosis by FOR KOM E model. J. For. Sci. (Prague), 53(4), 162−169.10.17221/2355-JFSSearch in Google Scholar

Kucharzyk, S. (2005). An influence of the exposition and elevation above sea level upon the dynamics of forest stands at the upper timberline at Bieszczadzki National Park (in Polish). Roczniki Bieszczadzkie, 13, 173−201.Search in Google Scholar

Kucharzyk, S. & Sugiero D. (2007). A differentiation of the dynamics of reforestation processes in beech stands of Bieszczady, depending on the slope exposition and elevation (in Polish). Sylwan, 7, 29−38.Search in Google Scholar

Leemans, R. & Prentice I.C. (1989). FORSKA, a general forest succesion model. Uppsala: Meddelanden fran Vaxbiologiska Institutionen.Search in Google Scholar

Lek, S. & Guegan J.F. (1999). Artificial neural networks as a tool in ecological modelling, an introduction. Ecol. Model., 120, 65-73. DO I: 10.1016/S0304-3800(99)00092-7.10.1016/S0304-3800(99)00092-7Search in Google Scholar

McGarigal, K. & Marks B.J. (1995). FRAGSTATS . Spatial analysis program for quantifying landscape structure. USDA For. Serv. Gen. Tech. Rep. PNW-GTR-351.10.2737/PNW-GTR-351Search in Google Scholar

Michalik, S. & Szary A. (1997). Forest communities of Bieszczadzki National Park (in Polish). Monografie Bieszczadzkie 1.Search in Google Scholar

Pacala, S.W., Canham, C.D. & Silander J.A.J. (1993). Forest models defined by field measurements: I. The design of a northeastern forest simulator. Can. J. For. Res., 23, 1980−1988. DO I: 10.1139/x93-249.Search in Google Scholar

Prentice, I.C. & Leemans R. (1990). Pattern and process and the dynamics of forest structure: a simulation approach. J. Ecol., 78, 340−355. http://www.jstor.org/stable/226111610.2307/2261116Search in Google Scholar

Pretzsch, H., Biber, P. & Durský J. (2002). The single tree-based stand simulator SILVA : construction, application and evaluation. For. Ecol. Manag., 162, 3-21. DO I: 10.1016/S0378-1127(02)00047-6.10.1016/S0378-1127(02)00047-6Search in Google Scholar

Seńko, Z. & Jóźwina M. (2004). CELAUT model perspective in landscape ecology (in Ukrainian). Visnyk of L’viv University. Series Geographical, 31, 333−339.Search in Google Scholar

Shugart, H.H. & West D.C. (1977). Development of an Appalachian deciduos forest model and its application to assessment of the impact of the chestnut blight. J. Environ. Manag., 5, 161−179.Search in Google Scholar

Urban, D.L. (1990). A versatile model to simulate forest pattern: a user’s guide to ZELIG version 1.0. Charlottesville, VA : University of Virginia, Environmental Sciences Department.Search in Google Scholar

Urban, D.L., Bonan, G.B., Smith, T.M. & Shugart H.H. (1991). Spatial applications of gap models. For. Ecol. Manag., 42, 95−110. DO I: 10.1016/0378-1127(91)90067-6. Search in Google Scholar

eISSN:
1337-947X
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Chemistry, Environmental Chemistry, Geosciences, Geography, Life Sciences, Ecology, other