Open Access

On the distribution of urine output in normally cycling women


Cite

Al Afraa T., Mahfouz W., Campeau L., Corcus J. (2012): Normal lower urinary tract assessment in women: I. Uroflowmetry and post-void residual, pad tests, and bladder diaries. Int. Urogynecol. J. 23: 681-685.10.1007/s00192-011-1568-zSearch in Google Scholar

Araki S., Aono H., Murata K. (1986a): Adjustment of urinary concentration to urinary volume in relation to erythrocyte and plasma concentrations: an evaluation of urinary heavy metals and organic substances. Arch. Environ. Health 41: 171-177.10.1080/00039896.1986.9935773Search in Google Scholar

Araki S., Murata K., Aono H., Yanagihara S., Niinuma Y., Yamamoto R., Ishihara N. (1986b): Comparison of the effects of urinary flow on adjusted and nonadjusted excretion of heavy metals and organic substances in ‘healthy’ men. J. Appl. Toxicol. 6: 245-251.10.1002/jat.2550060404Search in Google Scholar

Barapatre Y., Agarwal M.M., Singh S.K., Sharma S.K., Mavuduru R., Mete U.K., Kumar S., Mandal A.K. (2009): Uroflowmetry in healthy women: development and validation of flow–volume and corrected flow–age nomograms. Neurourol. Urodynamics 28: 1003-1009.10.1002/nau.20718Search in Google Scholar

Barr D.B., Wilder L.C., Caudill S.P., Gonzalez A.J., Needham L.L., Pirkle J.L. (2005): Urinary creatinine concentrations in the U. S. population: implications for urinary biologic monitoring measurements. Environ. Health Perspectives 113: 192-200.10.1289/ehp.7337Search in Google Scholar

Blackwell L.F., Brown J.B., Vigil P., Gross B., Sufi S., d’Arcangues C. (2003): Hormonal monitoring of ovarian activity using the Ovarian Monitor, part I. Validation of home and laboratory results obtained during ovulatory cycles by comparison with radioimmunoassay. Steroids 68: 465-476.10.1016/S0039-128X(03)00049-7Search in Google Scholar

Blackwell L.F., Vigil P., Alliende M.E., Brown S., Festin M., Cooke D.G. (2016): Monitoring of ovarian activity by measurement of urinary excretion rates using the Ovarian Monitor, part IV: the relationship of the pregnanediol glucuronide threshold, basal body temperature and cervical mucus as markers for the beginning of the post-ovulatory infertile period. Human Reprod. 31: 445-453.10.1093/humrep/dev303Search in Google Scholar

Blackwell L.F., Vigil P., Cooke D.G., d’Arcangues C., Brown J.B. (2013): Monitoring of ovarian activity by daily measurement of urinary excretion rates of estrone glucuronide and pregnandediol glucuronide using the Ovarian Monitor, part III: Variability of normal menstrual cycle profiles. Human Reprod. 28: 3306-3315.10.1093/humrep/det38924170744Search in Google Scholar

Blackwell L.F., Vigil P., Gross B., d’Arcangues C., Cooke D.G., Brown J.B. (2012): Monitoring of ovarian activity by measurement of urinary excretion rates of estrone glucuronide and pregnanediol glucuronide using the ovarian monitor, part II: reliability of home testing. Human Reprod. 27: 550-557.10.1093/humrep/der40922131389Search in Google Scholar

Brown J.B. (2011): Types of ovarian activity in women and their significance: the continuum (a reinterpretation of early findings). Human Reprod. Update 17: 141-158.10.1093/humupd/dmq040Search in Google Scholar

Brown J.B., Blackwell L.F., Holmes J., Smyth K. (1989): New assays for identifying the fertile period. Int. J. Gynecol. Obstet. suppl 1: 111-22.Search in Google Scholar

Brown S. (2017): The distribution of phoneme inventory and language evolution. Cultural Anthropol. Ethnosemiotics 3: 22-34.Search in Google Scholar

Brown S., Blackwell L.F., Cooke D.G. (2017): Online fertility monitoring: some of the issues. Int. J. Open Information Technol. 5: 85-91.Search in Google Scholar

Brown S., Cooke D.G., Blackwell L.F. (2018): Monitoring the menstrual cycle using urine oestrone glucuronide: the relationship between excretion rate and concentration. Int. J. Basic Med. Sci. Pharm., in press.Search in Google Scholar

Charlton K.E., Batterham M.J., Buchanan L.M., Mackerras D. (2014): Intraindividual variation in urinary iodine concentrations: effect of adjustment on population distribution using two and three repeated spot urine collections. BMJ Open 4: e003799.10.1136/bmjopen-2013-003799390237424401724Search in Google Scholar

Cooke D.G. (2000). Homogeneous and heterogeneous enzyme immunoassays for the home detection of fertility. PhD thesis, Massey University.Search in Google Scholar

Côté A.-M., Firoz T., Mattman A. (2008): The 24-hour urine collection: gold standard of historical practice? Am. J. Obstet. Gynecol. 199: 625.e1-625.e6.10.1016/j.ajog.2008.06.00918718568Search in Google Scholar

Craig A., Cloarec O., Holmes E., Nicholson J.K., Lindon J.C. (2006): Scaling and normalization effects in NMR spectroscopic metabonomic data sets. Anal. Chem. 78: 2262-2267.10.1021/ac0519312Search in Google Scholar

Dieterle F., Ross A., Schlotterbeck G., Senn H. (2006): Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Anal. Chem. 78: 4281-4290.10.1021/ac051632cSearch in Google Scholar

Dudewicz E.J., Mishra S.N. (1988): Modern mathematical statistics. John Wiley and Sons, Inc., New York.Search in Google Scholar

Ecochard R., Leiva R., Bouchard T., Boehringer H., Direito A., Mariani A., Fehring R. (2013): Use of urinary pregnanediol 3-glucuronide to confirm ovulation. Steroids 78: 1035-1040.10.1016/j.steroids.2013.06.00623831784Search in Google Scholar

Fong A.K.H., Kretsch M.J. (1993): Changes in dietary intake, urinary nitrogen, and urinary volume across the menstrual cycle. Am. J. Clin. Nutr. 57: 43-46.10.1093/ajcn/57.1.43Search in Google Scholar

Gaspari F., Perico N., Remuzzi G. (2006): Timed urine collections are not needed to measure urine protein excretion in clinical practice. Am. J. Kidney Diseases 47: 1-7.10.1053/j.ajkd.2005.10.014Search in Google Scholar

Groeger J.A., Zijlstra F.R.H., Dijk D.-J. (2004): Sleep quantity, sleep difficulties and their perceived consequences in a representative sample of some 2000 British adults. J. Sleep Res. 13: 359-371.10.1111/j.1365-2869.2004.00418.xSearch in Google Scholar

Hays S.M., Aylward L.L., Blount B.C. (2015): Variation in urinary flow rates according to demographic characteristics and body mass index in NHANES: potential confounding of associations between health outcomes and urinary biomarker concentrations. Environ. Health Perspectives 123: 293-300.10.1289/ehp.1408944Search in Google Scholar

Hublin C., Kaprio J., Partinen M., Koskenvuc M. (2001): Insufficient sleep – a popu-lation-based study in adults. Sleep 24: 392-400.10.1093/sleep/24.4.392Search in Google Scholar

Ihaka R., Gentleman R. (1996): R: a language for data analysis and graphics. J. Comput. Graphical Stat. 5: 299-314.10.1080/10618600.1996.10474713Search in Google Scholar

Ji C., Sykes L., Paul C., Dary O., Legetic B., Campbell N.R.C., Cappuccio D.P. (2012): Systematic review of studies comparing 24-hour and spot urine collections for estimating population salt intake. Rev. Panamericana Salud Publica 32: 307-315.10.1590/S1020-49892012001000010Search in Google Scholar

Johnson S., Weddell S., Godbert S., Freundl G., Roos J., Gnoth C. (2015): Development of the first urinary reproductive hormone ranges referenced to independently determined ovulation day. Clin. Chem. Lab. Med. 53: 1099-1108.10.1515/cclm-2014-1087Search in Google Scholar

Kolman C., Girman C.J., Jacobsen S.J., Lieber M.M. (1999): Distribution of post-void residual urine volume in randomly selected men. J. Urol. 161: 122-127.10.1016/S0022-5347(01)62081-0Search in Google Scholar

Lane C., Brown M., Dunsmuir W., Kelly J., Mangos G. (2006): Can spot urine protein/creatinine ratio replace 24 h urine protein in usual clinical nephrology? Nephrol. 11: 245-249.10.1111/j.1440-1797.2006.00564.xSearch in Google Scholar

Lo C.F. (2012): The sum and difference of two lognormal random variables. J. Appl. Math. 2012: 838397.10.2139/ssrn.2064829Search in Google Scholar

MacGregor E.A., Frith A., Ellis J., Aspinall L., Hackshaw A. (2006): Incidence of migraine relative to menstrual cycle phases of rising and falling estrogen. Neurol. 67: 2154-2158.10.1212/01.wnl.0000233888.18228.1916971700Search in Google Scholar

Miller M., Simundic A.-M. (2013): Low level of adherence to instructions for 24-hour urine collection among hospital outpatients. Biochemia Medica 23: 316-320.10.11613/BM.2013.038Search in Google Scholar

Miro F., Coley J., Gani M.M., Perry P.W., Talbot D., Aspinall L.J. (2004): Comparison between creatinine and pregnanediol adjustments in the retrospective analysis of urinary hormone profiles during the human menstrual cycle. Clin. Chem. Lab. Med. 42: 1043-1050.10.1515/CCLM.2004.210Search in Google Scholar

Murakami T., Kawakami H. (1992): Urine concentration adjustment with a dipstick is dispensable for urinary β2-microglobulin screening in children. Japanese J. Nephrol. 34: 29-32.Search in Google Scholar

Pearson K. (1897): Mathematical contributions to the theory of evolution. On a form of spurious correlation which may arise when indices are used in the measurement of organs. Proc. R. Soc. Lond. 60: 489-498.10.1098/rspl.1896.0076Search in Google Scholar

Perrone R.D., Madias N.E., Levey A.S. (1992): Serum creatinine as an index of renal function: new insights into old concepts. Clin. Chem. 38: 1933-1953.10.1093/clinchem/38.10.1933Search in Google Scholar

Pfisterer M.H.-D., Griffiths D.J., Rosenberg L., Schaefer W., Resnick N.M. (2007): Parameters of bladder function in pre-, peri-, and postmenopausal continent women without detrusor overactivity. Neurourol. Urodynamics 26: 356-361.10.1002/nau.2038117285577Search in Google Scholar

Rasmussen L.G., Savorani F., Larsen T.M., Dragsted L.O., Astrup A., Engelsen S.B. (2011): Standardization of factors that influence human urine metabolomics. Metabolomics 7: 71-83.10.1007/s11306-010-0234-7Search in Google Scholar

Remer T., Neubert A., Maser-Gluth C. (2002): Anthropometry-based reference values for 24-h urinary creatinine excretion during growth and their use in endocrine and nutritional research. Am. J. Clin. Nutr. 75: 561-569.10.1093/ajcn/75.3.56111864864Search in Google Scholar

Shidham G., Herbert L.A. (2006): Timed urine collections are not needed to measure urine protein excretion in clinical practice. Am. J. Kidney Diseases 47: 8-14.10.1053/j.ajkd.2005.10.01316377380Search in Google Scholar

Thudichum J.L.W. (1858): A treatise on the pathology of the urine, including a complete guide to its analysis. John Churchill, London.Search in Google Scholar

Ursin R., Bjorvatn B., Holsten F. (2005): Sleep duration, subjective sleep need, and sleep habits of 40- to 45-year-olds in the Hordaland Health study. Sleep 28: 1260-1269.10.1093/sleep/28.10.126016295211Search in Google Scholar

Weaver V.M., Vargas G.G., Silbergeld E.K., Rothenberg S.J., Fadrowski J.J., Rubio-Andrade M., Parsons P.J., Steuerwald A.J., Navas-Acien A., Guallar E. (2014): Impact of urine concentration adjustment method on associations between urine metals and estimated glomerular filtration rates (eGFR) in adolescents. Environ. Res. 132: 226-232.10.1016/j.envres.2014.04.013Search in Google Scholar

White C.P., Hitchcock C.L., Vigna Y.M., Prior J.C. (2011): Fluid retention over the menstrual cycle: 1-year data from the Prospective Ovulation Cohort. Obstet. Gynecol. Int. 2011: 138451.10.1155/2011/138451Search in Google Scholar

Ziomkiewicz A., Wichary S., Bochenek D., Pawlowski B., Jasienska G. (2012): Temperament and ovarian reproductive hormones in women: evidence from a study during the entire menstrual cycle. Hormones Behavior 61: 535-540.10.1016/j.yhbeh.2012.01.01722342576Search in Google Scholar

eISSN:
1896-3811
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, Bioinformatics, other, Mathematics, Probability and Statistics, Applied Mathematics