Open Access

The Quality of Freeze-Dried and Rehydrated Blueberries Depending on their Size and Preparation for Freeze-Drying


Cite

1. Antal, T., Sikolya, L., & Kerekes, B. (2013). Assessment of freezing pre-treatments for the freeze dried of apple slices. Acta Univ. Cibiniensis, Ser. E: Food Technol., 17(2), 3–14. DOI: 10.2478/aucft-2013-0006.10.2478/aucft-2013-0006Search in Google Scholar

2. Arnao, M.B., Cano, A. & Acosta, M. (2001). The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem., 73, 239–244. https://doi.org/10.1016/S0308-8146(00)00324-1.10.1016/S0308-8146(00)00324-1Search in Google Scholar

3. Bednarek, M., Krupa-Małkiewicz, M. & Ochmian, I. (2017). Changes in quality during storage of highbush blueberries prepared by using automatic packaging line. Badania i Rozwój Młodych Naukowców w Polsce. Agronomia i ochrona roślin. 19–26, ISBN: 978-83-65677-77-8.Search in Google Scholar

4. Benzie, I.F.F. & Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “Antioxidant Power”: the FRAP assay. Anal. Biochem., 239, 70–76. DOI: 10.1006/abio.1996.0292.10.1006/abio.1996.02928660627Search in Google Scholar

5. Bober, I. & Oszmiański, J. (2004). Zastosowanie wytłoków aronii do naparów herbat owocowych. Acta Sci. Pol., Technol. Aliment., 3(1), 63–72.Search in Google Scholar

6. Brazelton, C. (2013). World Blueberry Acreage & Production, North American Blueberry Council.Search in Google Scholar

7. Bustos, M. C., Rocha-Parra, D., Sampedro, I., de Pascual-Teresa, S., & León, A. E. (2018). The influence of different air-drying conditions on bioactive compounds and antioxidant activity of berries. J. Agric. Food Chem., 66(11), 2714–2723. DOI: https://doi.org/10.1021/acs.jafc.7b05395.10.1021/acs.jafc.7b0539529498838Search in Google Scholar

8. Chełpiński, P., Ochmian, I., & Forczmański, P. (2019). Sweet Cherry Skin Colour Measurement as an Non-Destructive Indicator of Fruit Maturity. Acta Univ. Cibiniensis, Ser. E: Food Technol., 23(2), 157–166. DOI: https://doi.org/10.2478/aucft-2019-0019.10.2478/aucft-2019-0019Search in Google Scholar

9. Choińska, A., Górnicki, K., Winiczenko, R., & Kaleta, A. (2014). The influence of rehydration conditions on the volume change of dried apple cossettes. Postępy Techniki Przetwórstwa Spożywczego. 1, 47–50.Search in Google Scholar

10. Ciurzyńska, A. & Lenart, A. (2009). The influence of temperature on rehydration and sorption properties of freeze-dried strawberries. Croat. J. Food Sci. Technol., 1(1), 17–25.Search in Google Scholar

11. Ciurzyńska, A. & Lenart, A. (2010). Rehydration and sorption properties of osmotically pretreated freezedried strawberries. J. Food Eng., 97, 267–274.10.1016/j.jfoodeng.2009.10.022Search in Google Scholar

12. Dinda, B., Kyriakopoulos, A.M., Dinda, S., Zoumpourlis, V., Thomaidis, N.S., Velegraki, A., Markopoulos, Ch. & Dinda, M. (2016). Cornus mas L. (cornelian cherry), an important European and Asian traditional ford and medicine: Etnomedicine, phytochemistry and pharmacology for its commercial utilization in drug industry. J. Ethopharmacol., 193, 670–690. https://doi.org/10.1016/j.jep.2016.09.042.10.1016/j.jep.2016.09.04227705748Search in Google Scholar

13. Giovanelli, G. & Buratti, S. (2009). Comparison of polyphenolic composition and antioxidant activity of wild Italian blueberries and some cultivated varieties. Food Chem., 112(4), 903–908. DOI: 10.1016/j.foodchem.2008.06.066.10.1016/j.foodchem.2008.06.066Search in Google Scholar

14. Girones-Vilaplana, A., Baenas, N., Villaño, D., Speisky, H., García-Viguera, C. & Moreno, D.A. (2014). Evaluation of Latin-American fruits rich in phytochemicals with biological effects. J. Funct. Foods., 7, 599–608. https://doi.org/10.1016/j.jff.2013.12.025.10.1016/j.jff.2013.12.025Search in Google Scholar

15. Glonek, J. & Komosa, A. (2013). Fertigation of highbush blueberry (Vaccinium corymbosum L.). Part I. The effect on growth and yield. Acta Sci. Pol. Hortorum Cultus, 12(3), 47–57.Search in Google Scholar

16. Gu, L., Kelm, M., Hammerstone, J.F., Beecher, G., Cunningham, D., Vannozzi, S. & Prior, R.L. (2002). Fractionation of polymeric procyanidins from lowbush blueberry and quantification of procyanidins in selected foods with an optimized normal-phase HPLC–MS fluorescence detection method. J. Agr. Food Chem., 50(17), 4852–4860. DOI: 10.1021/jf020214v.10.1021/jf020214v12166971Search in Google Scholar

17. Guiné, R., Gonçalves, C., Matos, S., Gonçalves, F., Costa, D.V.T.D. & Mendes, M. (2018). Modelling Through Artificial Neural Networks of the Phenolic Compounds and Antioxidant Activity of Blueberries. Iran J. Chem. Eng., 37(2), 193–212.Search in Google Scholar

18. Gyurova, D. & Enikova, R. (2014). Dried fruits–brief characteristics of their nutritional values. Author’s own data for dietary fibers content. J. Food Nutr. Sci., 2(4), 105–109. DOI: 10.11648/j.jfns.20140204.12.10.11648/j.jfns.20140204.12Search in Google Scholar

19. Hunterlab. (2012). Measuring Color using Hunter L, a, b versus CIE 1976 L*a*b*. AN 1005.00: 1–4. (www.hunterlab.com/an-1005b.pdf).Search in Google Scholar

20. Harasymowicz-Boggio, B. (2012). Automatyczne, wizyjne sortowanie owoców. Pomiary Automatyka, Robotyka 16, 377–382.Search in Google Scholar

21. He, B., Zhang, L.L., Yue, X.Y., Liang, J., Jiang, J., Gao, X.L. & Yue, P.X. (2016). Optimization of ultrasound-assisted extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium ashei) wine pomace. Food Chem., 204, 70–76. DOI:10.1016/j.foodchem.2016.02.094.10.1016/j.foodchem.2016.02.094Search in Google Scholar

22. Hernández-Alcántara, A. M., Totosaus, A., & Pérez-Chabela, M. L. (2016). Evaluation of agro-industrial co-products as source of bioactive compounds: fiber, antioxidants and prebiotic. Acta Univ. Cibiniensis, Ser. E: Food Technol., 20(2), 3–16. DOI: 10.1515/aucft-2016-0011.10.1515/aucft-2016-0011Search in Google Scholar

23. Kaleta, A., Górnicki, K., Choińska, A., & Winiczenko, R. (2013). Wpływ parametrów suszenia na ubytek masy suchej substancji podczas rehydratacji suszonych jabłek. Inżynieria Rolnicza, 17(4, t. 1), 111–120.Search in Google Scholar

24. Khin, M.M., Zhou, W. & Perera, C.O. (2007). Impact of process conditions and coatings on the rehydration efficiency and cellular structure of apple tissue during osmotic dehydration. J. Food Eng., 79, 817–827. DOI: 10.1016/j.jfoodeng.2006.02.046.10.1016/j.jfoodeng.2006.02.046Search in Google Scholar

25. Kirakosyan, A., Gutierrez, E., Solano, B.R., Seymour, E.M. & Bolling, S.F. (2018). The inhibitory potential of Montmorency tart cherry on key enzymes relevant to type 2 diabetes and cardiovascular disease. Food Chem., 252, 142–146. DOI:10.1016/j.foodchem.2018.01.084.10.1016/j.foodchem.2018.01.084Search in Google Scholar

26. Koszański, Z., Rumasz-Rudnicka, E., Jaroszewska, A., & Kowalewska, R. (2011). Reakcja borówki wysokiej odmiany ‘Spartan’ i ‘Patriot’ na nawadnianie kroplowe. Infrastruktura i Ekologia Terenów Wiejskich 05, 95–103.Search in Google Scholar

27. Kozos, K., Mijowska, K., Kruczek, A. & Ochmian, I. (2016). Wpływ sposobu przygotowania owoców borówki wysokiej (Vaccinium corymbosum L.) na efektywność ich liofilizowania. Nauki przyrodnicze. Cz. 2(7), 49–55. ISBN:978-83-65362-17-9.Search in Google Scholar

28. Krokida, M.K. & Marinos-Kouris, D. (2003). Rehydration kinetics of dehydrated products. J. Food Eng., 57(1), 1–7. DOI: 10.1016/S0260-8774(02)00214-5.10.1016/S0260-8774(02)00214-5Search in Google Scholar

29. Laaksonen, O., Knaapila, A., Niva, T., Deegan, K. C., & Sandell, M. (2016). Sensory properties and consumer characteristics contributing to liking of berries. Food Qualit. Pref., 53, 117–126. DOI: https://doi.org/10.1016/j.foodqual.,2016.06.004.10.1016/j.foodqual.2016.06.004Search in Google Scholar

30. Lewicki, P.P. (1998a). Some remarks on rehydration of dried foods. J. Food Eng., 36(1), 81–87.10.1016/S0260-8774(98)00022-3Search in Google Scholar

31. Lewicki, P.P. (1998b). Effect of pre-drying treatment, drying and rehydration on plant tissue properties: A review. Int. J. Food Prop., 1(1), 1–22. DOI: https://doi.org/10.1080/10942919809524561.10.1080/10942919809524561Search in Google Scholar

32. Lis, T., Lis, H., & Kłoczek, E. (2004). Dependence of qualitative factors of lyophilisate, drying time and energy consumption on its humidity. Acta Agrophys., 4(3), 747–752.Search in Google Scholar

33. McDougall, G.J., Shpiro, F., Dobson, P., Smith, P., Blake, A. & Stewart, D. (2005). Different polyphenolic components of soft fruits inhibit α-amylase and α-glucosidase. J. Agric. Food Chem., 53(7), 2760–2766. https://doi:10.1021/jf0489926.10.1021/jf048992615796622Search in Google Scholar

34. Mitek, M., Ścibisz, I. & Kopera, M. (2006). Czy borówka wysoka i gruszka azjatycka trafią do przetwórstwa? Przemysł Spożywczy 60(6), 28–31.Search in Google Scholar

35. Moldovan, B., Filip, A., Clichici, S., Suharoschi, R., Bolfa, P. & David, L. (2016). Antioxidant activity of cornelian cherry (Cornus mas L.) fruits extract and the in vivo evaluation of its anti-inflammatory effects. J. Funct. Foods., 26, 77–87. https://doi.org/10.1016/j.jff.2016.07.004.10.1016/j.jff.2016.07.004Search in Google Scholar

36. Mystkowska, I., Grużewska, A., Gugała, M., Baranowska, A., Zarzecka, K., & Bącik, M. (2017). Profitability of highbush blueberry production. Zeszyty Naukowe Uniwersytetu Przyrodniczo-Humanistycznego w Siedlcach, Seria: Administracja i Zarządzanie, 40(113), 95–105. DOI: 10.15611/nit.2017.2.04.10.15611/nit.2017.2.04Search in Google Scholar

37. Nenadis, N. & Tsimidou, M. (2002). observations on the estimation of scavenging activity of phenolic compounds using rapid 1,1-diphenyl-2-picrylhydrazyl (DPPH•) tests. J. Am. Chem. Soc., 79: 1191–1195. DOI: 10.1021/jf0400056.10.1021/jf040005615264898Search in Google Scholar

38. Nickavar, B. & Yousefian, N. (2011). Evaluation of α-amylase inhibitory activities of selected antidiabetic medicinal plants. J. Verbr. Lebensm., 6(2), 191–195. https://doi.org/10.1007/s00003-010-0627-6.10.1007/s00003-010-0627-6Search in Google Scholar

39. Ochmian, I. & Kozos, K. (2014). Fruit quality of highbush blueberry (Vaccinium corymbosum L.) cv. ‘Duke’ depending on the method of cultivation. Folia Pomeranae Univ. Technol. Stetin., Agric. Aliment. Piscaria Zootech., 312(31), 117–126.Search in Google Scholar

40. Ochmian, I. & Kozos, K. (2015). Influence of foliar fertilisation with calcium fertilisers on the firmness and chemical composition of two highbush blueberry cultivars. J. Elem., 20(1). DOI: 10.5601/jelem.2014.19.4.782.10.5601/jelem.2014.19.4.782Search in Google Scholar

41. Ochmian, I., Kozos, K., Chelpiński, P. & Szczepanek, M. (2015). Comparison of berry quality in highbush blueberry cultivars grown according to conventional and organic methods. Turk. J. Agric. For., 39(2), 174–181.10.3906/tar-1404-18Search in Google Scholar

42. Ochmian, I., Malinowski, R., Kubus, M., Malinowska, K., Sotek, Z. & Racek, M. (2019a). The feasibility of growing highbush blueberry (V. corymbosum L.) on loamy calcic soil with the use of organic substrates. Sci. Hortic., 257, 108690. DOI: https://doi.org/10.1016/j.scienta.2019.108690.10.1016/j.scienta.2019.108690Search in Google Scholar

43. Ochmian, I., Oszmiański, J., Jaśkiewicz, B. & Szczepanek, M. (2018). Soil and highbush blueberry responses to fertilization with urea phosphate. Folia Hortic., 30(2), 295–305. DOI: 10.2478/fhort-2018-0025.10.2478/fhort-2018-0025Search in Google Scholar

44. Ochmian, I., Oszmiański, J., Lachowicz, S. & Krupa-Małkiewicz, M. (2019b). Rootstock effect on physico-chemical properties and content of bioactive compounds of four cultivars Cornelian cherry fruits. Sci. Hortic., 256, DOI108588.https://doi.org/10.1016/j.scienta.2019.108588.10.1016/j.scienta.2019.108588Search in Google Scholar

45. Ochwanowska, E., Chmielewski, J., Łaba, S. & Żeber-Dzikowska, I. (2017). Lyophilized berry fruits – their antioxidant properties, Przemysł Spożywczy 71(12), 23–27. DOI: 10.15199/65.2017.12.410.15199/65.2017.12.4Search in Google Scholar

46. Okan, O.T. & Yayli, N. (2018). Antioxidant Activity, Sugar Content and Phenolic Profiling of Blueberries Cultivars: A Comprehensive Comparison. Not. Bot. Horti. Agrobo., 46(2), 639–652. DOI: https://doi.org/10.15835/nbha46211120.10.15835/nbha46211120Search in Google Scholar

47. Oszmiański, J., Lachowicz, S., Gławdel, E., Cebulak, T. & Ochmian, I. (2018). Determination of phytochemical composition and antioxidant capacity of 22 old apple cultivars grown in Poland. Eur. Food Res. Technol., 244(4), 647–662. https://doi.org/10.1007/s00217-017-2989-9.10.1007/s00217-017-2989-9Search in Google Scholar

48. Perrier, C., Mingeau, M., Ameglio, T., Ferreira, M.I. & Jones H.G. (2000). Effects of water stress on transpiration, radial growth and yield in highbush blueberry. Acta Hort., 537(2), 923–928. DOI: 10.14597/infraeco.2017.3.2.084.10.17660/ActaHortic.2000.537.112Search in Google Scholar

49. Piotrowski, D., Biront, J. & Lenart, A. (2008). Barwa i właściwości fizyczne odwadnianych osmotycznie i suszonych sublimacyjnie truskawek. Żywność Nauka Technologia Jakość, 15(4), 216–226.Search in Google Scholar

50. PN-90/A-75101/03 and 04. Przetwory owocowe i warzywne. Przygotowanie próbek i metody badań fizykochemicznych. Oznaczanie zawartości suchej masy metodą wagową.Search in Google Scholar

51. PN-A-77608. 1997. Produkty owocowe. Jabłka, gruszki, wiśnie suszone. Polski Komitet Normalizacyjny. Warszawa: 1–11.Search in Google Scholar

52. Podsędek, A., Majewska, I., Redzynia, M., Sosnowska, D. & Koziołkiewicz, M. (2014). In vitro inhibitory effect on digestive enzymes and antioxidant potential of commonly consumed fruits. J. Agric. Food Chem., 62(20), 4610–4617. https://doi:10.1021/jf5008264.10.1021/jf500826424785184Search in Google Scholar

53. Roopchand, D.E., Kuhn, P., Rojo, L.E., Lila, M.A. & Raskin, I. (2013). Blueberry polyphenol-enriched soybean flour reduces hyperglycemia, body weight gain and serum cholesterol in mice. Pharmacol. Res., 68(1): 59–67. DOI: 10.1016/j.phrs.2012.11.008.10.1016/j.phrs.2012.11.008383359023220243Search in Google Scholar

54. Rutkowska, J., Adamska, A., Pielat, M. & Bialek, M. (2012). Porównanie składu i właściwości owoców dzikiej róży (Rosa rugosa) utrwalanych metodami liofilizacji i suszenia konwencjonalnego. Żywność Nauka Technologia Jakość, 19(4).Search in Google Scholar

55. Rząca, M. & Wichrowa-Rajchert, D. (2007). Suszenie żywności w niskiej temperaturze. Przemysł spożywczy, 61(4), 30–35.Search in Google Scholar

56. Sablani, S. S., Andrews, P. K., Davies, N. M., Walters, T., Saez, H. & Bastarrachea, L. (2011). Effects of air and freeze drying on phytochemical content of conventional and organic berries. Drying Technology, 29(2), 205–216. DOI: https://doi.org/10.1080/07373937.2010.483047.10.1080/07373937.2010.483047Search in Google Scholar

57. Sadowska, A., Dybkowska, E., Rakowska, R., Hallmann, E. & Świderski, F. (2017). Assessing Contents Of Bioactive Constituents And Antioxidant Properties Of Powders Produced From Selected Plant Materials By Freeze-Drying Method. Żywność: Nauka-Technologia-Jakość 4(113), 59–75. DOI: 10.15193/zntj/2017/113/211.10.15193/zntj/2017/113/211Search in Google Scholar

58. Scalzo, J., Stevenson, D. & Hedderley, D. (2015). Polyphenol compounds and other quality traits in blueberry cultivars. J. Berry Res., 5(3), 117–130. DOI: 10.3390/ijms160818642.10.3390/ijms160818642458126426266408Search in Google Scholar

59. Schernewski, G. (2011). Adaptation to Climate Change: Viniculture and Tourism at the Baltic Coast. In: Schernewski, G., Hofstede, J., Neumann, T. (eds): Global Change and Baltic Coastal Zones, Coastal Research Library-Series, Springer 1, 233–247. DOI 10.1007/978-94-007-0400-8.10.1007/978-94-007-0400-8_14Search in Google Scholar

60. Sellappan, S., Akoh, C.C. & Krewer, G. (2002). Phenolic compounds and antioxidant capacity of Georgiagrown blueberries and blackberries. J. Agric. Food Chem., 50(8), 2432–2438. DOI: 10.1021/jf011097r.10.1021/jf011097r11929309Search in Google Scholar

61. Spinardi, A., Cola, G., Gardana, C. S., & Mignani, I. (2019). Variation of anthocyanins content and profile throughout fruit development and ripening of highbush blueberry cultivars grown at two different altitudes. Front. Plant Sci., 10, 1045. DOI: https://doi.org/10.3389/fpls.2019.01045.10.3389/fpls.2019.01045673707931552064Search in Google Scholar

62. Su, X., Zhang, J., Wang, H., Xu, J., He, J., Liu, L., Zhang, T., Chen, R. & Kang, J. (2017). Phenolic acid profiling, antioxidant, and anti-inflammatory activities, and miRNA regulation in the polyphenols of 16 blueberry samples from China. Molecules, 22(2), 312. DOI: 10.3390/molecules22020312.10.3390/molecules22020312615583628218703Search in Google Scholar

63. Šumić, Z., Vakula, A., Tepić, A., Čakarević, J., Vitas, J. & Pavlić, B. (2016). Modeling and optimization of red currants vacuum drying process by response surface methodology (RSM). Food Chem., 203, 465–475. DOI: 10.1016/j.foodchem.2016.02.109.10.1016/j.foodchem.2016.02.10926948639Search in Google Scholar

64. Treder, W. (2007). Zakwaszanie wody stosowanej w uprawie borówki wysokiej. I gólnopolska Konferencja Borówkowa, Inst. Sadow. i Kwiac., Skierniewice 25 czerwca, 1997, 56–62.10.3810/psm.1997.01.1097Search in Google Scholar

65. Tryngiel-Gac, A., Treder, W., Krawiec, A. & Klamkowski, K. (2013). Efektywność nawadniania kilku odmian borówki wysokiej. Infrastruktura i Ekologia Terenów Wiejskich, 1/II, 13–23.Search in Google Scholar

66. Tural, S. & Koca, I. (2008). Physico-chemical and antioxidant properties of cornelian cherry fruits (Cornus mas L.) grown in Turkey. Sci. Hort., 116, 362–366. DOI: https://doi.org/10.1016/j.scienta.2008.02.003.10.1016/j.scienta.2008.02.003Search in Google Scholar

67. Vuthijumnok, J., Molan, A. L., & Heyes, J. A. (2013). Effect of freeze-drying and extraction solvents on the total phenolic contents, total flavonoids and antioxidant activity of different Rabbiteye blueberry genotypes grown in New Zealand. Int. J. Pharm. Biol. Sci., 8, 42–48.10.9790/3008-0814248Search in Google Scholar

68. Wach, D. (2012). Estimation of growth and yielding of five highbush blueberry (Vaccinium corymbosum L.) cultivars. Folia Hortic., 24(1), 61–65. DOI: https://doi.org/10.2478/v10245-012-0007-z.10.2478/v10245-012-0007-zSearch in Google Scholar

69. Wang, P., Ji, R., Ji, J. & Chen, F. (2019). Changes of metabolites of acrylamide and glycidamide in acrylamide-exposed rats pretreated with blueberry anthocyanins extract. Food Chem., 274, 611–619. DOI: 10.1016/j.foodchem.2018.08.058.10.1016/j.foodchem.2018.08.05830372986Search in Google Scholar

70. Wang, T., Li, X., Zhou, B., Li, H., Zeng, J. & Gao, W. (2015). Anti-diabetic activity in type 2 diabetic mice and α-glucosidase inhibitory, antioxidant and anti-inflammatory potential of chemically profiled pear peel and pulp extracts (Pyrus spp.). J. Funct. Foods., 13, 276–288. DOI: https://doi.org/10.1016/j.jff.2014.12.049.10.1016/j.jff.2014.12.049Search in Google Scholar

71. Wu, X., Beecher, G.R., Holden, J.M., Haytowitz, D.B., Gebhardt, S.E. & Prior, R.L. (2006). Concentration of anthocyanins in common foods in the United States and estimation of normal consumption. J. Agric. Food Chem., 54, 4069–4075. https://doi.org/10.1021/jf060300l.10.1021/jf060300l16719536Search in Google Scholar

72. Zerbini, P.E. (2006). Emerging technologies for non-destructive quality evaluation of fruit. Journal of fruit and ornamental plant research, 14, 13. J. Fruit Ornam. Plant Res., 14(2), 13–23.Search in Google Scholar

73. Zhang, L., Yue, P., Jiang, J., Fan, J. & Gao, X. (2016). Effect of phenolic compounds on antioxidant activity in 8 Blueberry (Vaccinum spp.) Juices. Carpath. J. Food Sci. Technol., 8(2), 178–186.Search in Google Scholar

74. Zielińska, M. & Michalska, A. (2016). Microwave-assisted drying of blueberry (Vaccinium corymbosum L.) fruits: Drying kinetics, polyphenols, anthocyanins, antioxidant capacity, colour and texture. Food Chem., 212, 671–680.10.1016/j.foodchem.2016.06.00327374583Search in Google Scholar

75. Zielińska, M., Zapotoczny, P., Alves-Filho, O., Eikevik, T.M. & Błaszczak, W. (2013). Microwave vacuum-assisted drying of green peas using heat pump and fluidized bed: A comparative study between atmospheric freeze drying and hot air convective drying. Dry Technol 31(6), 633–642.10.1080/07373937.2012.751921Search in Google Scholar

76. Yen, G.C., Chen, H.Y., 1995. Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem. 43, 27–32.10.1021/jf00049a007Search in Google Scholar

eISSN:
2344-150X
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Industrial Chemistry, other, Food Science and Technology