Open Access

Application of Plackett-Burman Design in Screening Casein and Prebiotics for the Production of ACE Inhibitory Peptides from Cow Milk Fermented by L. bulgaricus LB6


Cite

1. Alazzeh, A. Y., Ibrahim, S. A., Song, D., Shahbazi, A., & Abughazaleh, A. A. (2009). Carbohydrate and protein sources influence the induction of α- and β-galactosidases in lactobacillus reuteri. Food Chemistry, 117(4), 654-659. DOI:10.1016/j.foodchem.2009.04.06510.1016/j.foodchem.2009.04.065Open DOISearch in Google Scholar

2. Ana Quirós, Ramos, M., Muguerza, B., Delgado, M. A., Miguel, M., & Aleixandre, A., et al. (2007). Identification of novel antihypertensive peptides in milk fermented with enterococcus faecalis. International Dairy Journal, 17(1), 33-41. DOI: 10.1016/j.idairyj.2005.12.01110.1016/j.idairyj.2005.12.011Open DOISearch in Google Scholar

3. Assimes, T. L., Elstein, E., Langleben, A., & Suissa, S. (2008). Long-term use of antihypertensive drugs and risk of cancer. Pharmacoepidemiology and Drug Safety, 17(11), 1039-1049.DOI: 10.1002/pds.165610.1002/pds.1656Open DOISearch in Google Scholar

4. Bao, C., Chen, He, Chen, Li., Cao, J., & Meng, J. (2016). Comparison of ACE inhibitory activity in skimmed goat and cow milk hydrolyzed by alcalase, flavourzyme, neutral protease and proteinase K, Acta Universitatis Cibiniensis. Series E: Food Technology, 20(1), 77-84. 10.1515/aucft-2016-0006Search in Google Scholar

5. Beatriz Gullón, Patricia Gullón, Sanz, Y., José Luis Alonso, & J.C. Parajó. (2011). Prebiotic potential of a refined product containing pectic oligosaccharides. LWT - Food Science and Technology, 44(8),1687-1696. DOI: 10.1016/j.lwt.2011.03.00610.1016/j.lwt.2011.03.006Search in Google Scholar

6. Carvalho, C. M. L., Serralheiro, M. L. M., Cabral, J. M. S., & Aires-Barros, M. R. (1997). Application of factorial design to the study of transesterification reactions using cutinase in AOT-reversed micelles. Enzyme & Microbial Technology, 21(2), 117-123. DOI: 10.1016/s0141-0229(96)00245-110.1016/s0141-0229(96)00245-1Open DOISearch in Google Scholar

7. Chen, H., Zhang, Q. H., Tian, Y., Wang, J., Shu, G. W. (2013). Effect of carbon and nitrogen sources on production of ACE inhibitory peptides fermented by Lactobacillus plantarum L69 from goat’s milk. J. Shaanxi Univ. Sci. Technol., 31(06), 105–108.Search in Google Scholar

8. Chen, He., Ma, L., Qi, J., Cao, J., & Tan, Y. (2019). Optimization of Fermentation Conditions for the Production of Angiotensin-Converting Enzyme (ACE) Inhibitory Peptides from Cow Milk by Lactobacillus bulgaricus LB6, Acta Universitatis Cibiniensis. Series E: Food Technology, 23(1), 19-26. DOI: 10.2478/aucft-2019-000310.2478/aucft-2019-0003Search in Google Scholar

9. Chen, L., Zhang, Q., Ji, Z., Shu, G., & Chen, H. (2018). Production and fermentation characteristics of angiotensin-i-converting enzyme inhibitory peptides of goat milk fermented by a novel wild Lactobacillus plantarum 69. LWT, 91, 532-540. DOI: 10.1016/j.lwt.2018.02.00210.1016/j.lwt.2018.02.002Open DOISearch in Google Scholar

10. Cushman, D. W., & Cheung, H. S. (1971). Spectrophotometric assay and properties of the angiotensin-converting engyme of rabbit lung. Biochemical Pharmacology, 20(7), 1637-1648. DOI: 10.1016/0006-2952(71)90292-910.1016/0006-2952(71)90292-9Search in Google Scholar

11. Du, L., Fang, M., Wu, H., Xie, J., Wu, Y. & Li, P., et al. (2013). A novel angiotensin i-converting enzyme inhibitory peptide from phascolosoma esculenta water-soluble protein hydrolysate. Journal of Functional Foods, 5(1), 475-483. DOI: 10.1016/j.jff.2012.12.00310.1016/j.jff.2012.12.003Open DOISearch in Google Scholar

12. Fredslund, F., Hachem, M. A., René Jonsgaard Larsen, S?Rensen, P. G., Coutinho, P. M., & Leggio, L. L., et al. (2011). Crystal structure of α-galactosidase from lactobacillus acidophilus ncfm: insight into tetramer formation and substrate binding. Journal of Molecular Biology, 412(3),466-480. DOI: 10.1016/j.jmb.2011.07.05710.1016/j.jmb.2011.07.05721827767Open DOISearch in Google Scholar

13. Georgalaki, M., Zoumpopoulou, G., Mavrogonatou, E., Van Driessche, G., Alexandraki, V., Anastasiou, R., Tsakalidou, E. (2017). Evaluation of the antihypertensive angiotensin-converting enzyme inhibitory (ACE-I) activity and other probiotic properties of lactic acid bacteria isolated from traditional Greek dairy products. International Dairy Journal, 75, 10–21. DOI: 10.1016/j.idairyj.2017.07.00310.1016/j.idairyj.2017.07.003Open DOISearch in Google Scholar

14. Gibson, G. R., Beatty, E. R., Wang, X., & Cummings, J. H. (1995). Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Journal of the American Dietetic Association, 108(4), 975-982. DOI: 10.1016/0016-5085(95)90192-210.1016/0016-5085(95)90192-2Open DOISearch in Google Scholar

15. Hajji, M., Masmoudi, O., Souissi, N., Triki, Y., Kammoun, S., & Nasri, M. (2010). Chemical composition, angiotensin i-converting enzyme (ace) inhibitory, antioxidant and antimicrobial activities of the essential oil from periploca laevigata root barks. Food Chemistry, 121(3), 724-731. DOI: 10.1016/j.foodchem.2010.01.02110.1016/j.foodchem.2010.01.021Open DOISearch in Google Scholar

16. Hernandez-Hernandez, O., Muthaiyan, A., Moreno, F. J., Montilla, A., Sanz, M. L., & Ricke, S. C. (2012). Effect of prebiotic carbohydrates on the growth and tolerance of Lactobacillus. Food Microbiology, 30(2), 355-361. DOI:10.1016/j.fm.2011.12.02210.1016/j.fm.2011.12.02222365348Open DOISearch in Google Scholar

17. J.C. Rodríguez-Figueroa, R. Reyes-Díaz, A.F. González-Córdova, Troncoso-Rojas, R., Vargas-Arispuro, I., & Vallejo-Cordoba, B. (2010). Angiotensin-converting enzyme inhibitory activity of milk fermented by wild and industrial Lactococcus lactis strains. Journal of Dairy Science, 93(11),5032-5038. DOI: 10.3168/jds.2010-310310.3168/jds.2010-310320965317Open DOISearch in Google Scholar

18. Liou, Y. S., Ma, T., Tien, L., Chien, C., Chou, P., & Jong, G. P. (2008). Long-term effects of antihypertensive drugs on the risk of new-onset diabetes in elderly taiwanese hypertensives. International Heart Journal, 49(2), 205-211. DOI:10.1536/ihj.49.20510.1536/ihj.49.20518475020Open DOISearch in Google Scholar

19. Miguel, M., Contreras, M. M., Recio, I., Aleixandre, A. (2009). ACE-inhibitory and antihypertensive properties of a bovine casein hydrolysate. Food Chem., 112(1), 211–214. DOI:10.1016/j.foodchem.2008.05.04110.1016/j.foodchem.2008.05.041Open DOISearch in Google Scholar

20. Naveena, B. J., Altaf, M., Bhadriah, K., & Reddy, G. (2005). Selection of medium components by plackett–burman design for production of l (+) lactic acid by lactobacillus amylophilus gv6 in ssf using wheat bran. Bioresource Technology, 96(4), 485-490. DOI:10.1016/j.biortech.2004.05.02010.1016/j.biortech.2004.05.02015491831Open DOISearch in Google Scholar

21. Oliveira, R. P. D. S., Perego, P., Maricê Nogueira de Oliveira, & Converti, A. (2012). Effect of inulin on the growth and metabolism of a probiotic strain of Lactobacillus rhamnosus in co-culture with streptococcus thermophilus. LWT - Food Science and Technology, 47(2),358-363. DOI: 10.1016/j.lwt.2012.01.03110.1016/j.lwt.2012.01.031Open DOISearch in Google Scholar

22. Pritchard, S. R. (2018). Isolation and characterisation of bioactive peptides derived from milk and cheese. Journal of Virology, 62(10), 3832–3839.Search in Google Scholar

23. Probert, H. M., & Gibson, G. R. (2002). Investigating the prebiotic and gasゞenerating effects of selected carbohydrates on the human colonic microflora. Letters in Applied Microbiology, 35(6), 473-480. DOI:10.1046/j.1472-765X.2002.01223.x10.1046/j.1472-765X.2002.01223.x12460427Open DOISearch in Google Scholar

24. R. López-Fandi?o, Otte, J., & Camp, J. V. (2006). Physiological, chemical and technological aspects of milk-protein-derived peptides with antihypertensive and ace-inhibitory activity. International Dairy Journal, 16(11),1277-1293. DOI:10.1016/j.idairyj.2006.06.00410.1016/j.idairyj.2006.06.004Open DOISearch in Google Scholar

25. Shuang, Q., Harutoshi, T., & Taku, M. (2010). Angiotensin i-converting enzyme inhibitory peptides in skim milk fermented with Lactobacillus helveticus 130B4 from camel milk in inner mongolia, China. Journal of the Science of Food & Agriculture, 88(15), 2688-2692. DOI:10.1002/jsfa.339410.1002/jsfa.3394Open DOISearch in Google Scholar

26. Srinivas, M. R. S., Chand, N., & Lonsane, B. K. (1994). Use of plackett–Burman design for rapid screening of several nitrogen sources, growth/product promoters, minerals and enzyme inducers for the production of alpha-galactosidase by Aspergillus niger MRSS234 in solid state fermentation system. Bioprocess and Biosystems Engineering, 10(3), 139-144. DOI:10.1007/BF0036947010.1007/BF00369470Open DOISearch in Google Scholar

27. Vernazza, C. L., Gibson, G. R., & Rastall, R. A. (2010). Carbohydrate preference, acid tolerance and bile tolerance in five strains of bifidobacterium. Journal of Applied Microbiology, 100(4), 846-853. DOI:10.1111/j.1365-2672.2006.02832.x10.1111/j.1365-2672.2006.02832.xOpen DOISearch in Google Scholar

28. Yamamoto, N., Akino, A., & Takano, T. (1994). Antihypertensive effects of different kinds of fermented milk in spontaneously hypertensive rats. Bioscience, Biotechnology and Biochemistry, 58(4), 776-778.10.1271/bbb.58.776Search in Google Scholar

29. Yamamoto, N., Akino, A., & Takano, T. (1994). Antihypertensive effect of the peptides derived from casein by an extracellular proteinase from Lactobacillus helveticus CP790. Journal of Dairy Science, 77(4), 917-922. DOI: 10.3168/jds.S0022-0302(94)77026-010.3168/jds.S0022-0302(94)77026-0Open DOISearch in Google Scholar

30. Yamamoto, N., Maeno, M., & Takano, T. (1999). Purification and characterization of an antihypertensive peptide from a yogurt-like product fermented by Lactobacillus helveticus CPN4. Journal of Dairy Science, 82(7),1388-1393. DOI: 10.3168/jds.s0022-0302(99)75364-610.3168/jds.s0022-0302(99)75364-6Open DOISearch in Google Scholar

eISSN:
2344-150X
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Industrial Chemistry, other, Food Science and Technology