Open Access

Hyperspectral Vegetation Indices Calculated by Qgis Using Landsat Tm Image: a Case Study of Northern Iceland


Cite

1. QGIS.org (2020). QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.org Search in Google Scholar

2. Bhandari, A. K., Kumar, A., Singh, G. K. (2012). Feature Extraction using Normalized Difference Vegetation Index (NDVI): a Case Study of Jabalpur City. Procedia Technology, 6, 612–621. Search in Google Scholar

3. Gim, H.-J., Ho, C.-H., Jeong, S., Kim J., Feng, S., Hayes, M.J. (2020). Improved mapping and change detection of the start of the crop growing season in the US Corn Belt from long-term AVHRR NDVI. Agricultural and Forest Meteorology, 294, 108143. DOI: 10.1016/j.agrformet.2020.108143 Search in Google Scholar

4. Lemenkova, P. (2016). Using GIS for Monitoring Lacustrine Ecosystem: a Case Study of Laguna de Gallocanta, Spain. Problems of the Environmental Landscape Planning, 237–240. Search in Google Scholar

5. Lemenkova, P. (2015). Modelling Landscape Changes and Detecting Land Cover Types by Means of the Remote Sensing Data and ILWIS GIS”. Information Technologies. Problems and Solutions, 265-271. Search in Google Scholar

6. French, A. N., Hunsaker, D. J., Sanchez, C. A., Saber, M., Gonzalez, J. R., Anderson, R. (2020). Satellite-based NDVI crop coefficients and evapotranspiration with eddy covariance validation for multiple durum wheat fields in the US Southwest. Agricultural Water Management, 239, 106266. Search in Google Scholar

7. Lemenkova, P. (2011). Seagrass Mapping and Monitoring Along the Coasts of Crete, Greece. M.Sc. Thesis. University of Twente, Faculty of Earth Observation and Geoinformation (ITC), Enschede, Netherlands. Search in Google Scholar

8. Eddudóttir, S.D., Erlendsson, E., Gísladóttir, G. (2015). Life on the periphery is tough: vegetation in Northwest Iceland and its responses to early-Holocene warmth and later climate fluctuations. Holocene, 25, 1437-1453. Search in Google Scholar

9. Etzelmüller, B., Patton, H., Schomacker, A., Czekirda, J., Girod, L., Hubbard, A., Lilleøren, K.S., Westermann, S. (2020). Icelandic permafrost dynamics since the Last Glacial Maximum – model results and geomorphological implications. Quaternary Science Review, 233, 106236. Search in Google Scholar

10. Cabedo-Sanz, P., Belt, S.T., Jennings, A.E., Andrews, J.T., Geirsdottir, A. (2016). Variability in drift ice export from the Arctic Ocean to the North Icelandic Shelf over the last 8000 years: a multi-proxy evaluation. Quaternary Science Reviews, 146, 99–115. Search in Google Scholar

11. Arnalds, O. (2001). Soil Erosion in Iceland. Agricultural Research Institute, Soil Conservation Service, Reykjavík. Search in Google Scholar

12. Eddudóttir, S.D., Erlendsson, E., Tinganelli, L., Gísladottir, G. (2016). Climate change and human impact in a sensitive ecosystem: the Holocene environment of the Northwest Icelandic highland margin. Boreas, 45, 715-728. Search in Google Scholar

13. Kardjilov, M., Gisladottir, G., Gislason, S. (2006). Land degradation in northeastern Iceland: present and past carbon fluxes. Land Degradation & Development, 17, 401–417. Search in Google Scholar

14. Petursdottir, T., Baker, S., Aradottir, A.L. (2020). Functional silos and other governance challenges of rangeland management in Iceland. Environmental Science & Policy, 105, 37-46. Search in Google Scholar

15. du Plessis, W.P. (1999). Linear regression relationships between NDVI, vegetation and rainfall in Etosha National Park, Namibia. Journal of Arid Environments, 42, 235–260. Search in Google Scholar

16. Gu, Y., Wylie, B.K., Howard, D.M., Phuyal, K.P., Jia, L. (2013). NDVI saturation adjustment: A new approach for improving cropland performance estimates in the Greater Platte River Basin, USA. Ecological Indicators, 30, 1-6. Search in Google Scholar

17. Rouse, J.W. Jr., Haas, R.H., Deering, D.W., Schell, J.A., Harlan, J.C. (1974). Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation. NASA/GSFC Type III Final Report, Greenbelt, MD., 371p. Search in Google Scholar

18. Burgess, D. W., Lewis, P., Muller, J-P.A.L. (1995). Topographic Effects in AVHRR NDVI Data. Remote Sensing of Environment, 54, 223-232. Search in Google Scholar

19. Lemenkova, P. (2015). Analysis of Landsat NDVI Time Series for Detecting Degradation of Vegetation. In: Geoecology and Sustainable Use of Mineral Resources. From Science to Practice, Belgorod, Russia, 11–13. Search in Google Scholar

20. Lemenkova, P. (2014). Detection of Vegetation Coverage in Urban Agglomeration of Brussels by NDVI Indicator Using eCognition Software and Remote Sensing Measurements. In: GIS and Remote Sensing. November 17–19, 2014, Tsaghkadzor, Armenia, 112–119. Search in Google Scholar

21. Richardson, A.J., Wiegand, C.L. (1977). Distinguishing Vegetation From Soil Background Information. Photogramnetric Engineering and Remote Sensing, 43(12), 1541-1552. Search in Google Scholar

22. Bannari, A., Asalhi, H., Teillet, P.M. (2002). Transformed Difference Vegetation Index (TDVI) for Vegetation Cover Mapping. IEEE Xplore Conf. Proc., 3053-3055. Search in Google Scholar

23. Thiam, A.K. (1997). Geographic Information Systems and Remote Sensing Methods for Assessing and Monitoring Land Degradation in the Sahel: The Case of Southern Mauritania. PhD Thesis. Clark University, Worcester Massachusetts. Search in Google Scholar

24. Huete, A.R. (1988). A Soil-Adjusted Vegetation Index (SAVI). Remote Sensing of Environment, 25(3): 295-309. Search in Google Scholar

25. Lemenkova, P. (2019). Statistical Analysis of the Mariana Trench Geomorphology Using R Programming Language. Geodesy and Cartography, 45(2), 57–84. Search in Google Scholar

26. Lemenkova, P. (2019). Processing oceanographic data by Python libraries NumPy, SciPy and Pandas. Aquatic Research, 2(2), 73-91. Search in Google Scholar

27. Schenke, H. W., Lemenkova, P. (2008). Zur Frage der Meeresboden-Kartographie: Die Nutzung von AutoTrace Digitizer für die Vektorisierung der Bathymetrischen Daten in der Petschora-See. Hydrographische Nachrichten, 81, 16–21. Search in Google Scholar

28. Suetova, I. A., Ushakova, L. A., Lemenkova, P. (2005). Geoinformation mapping of the Barents and Pechora Seas. Geography and Natural Resources, 4, 138–142. Search in Google Scholar

29. Lemenkova, P. (2019). AWK and GNU Octave Programming Languages Integrated with Generic Mapping Tools for Geomorphological Analysis. GeoScience Engineering, 65 (4), 1–22. Search in Google Scholar

30. Klaučo, M., Gregorová, B., Stankov, U., Marković, V., Lemenkova, P. (2013). Determination of ecological significance based on geostatistical assessment: a case study from the Slovak Natura 2000 protected area. Open Geosciences, 5(1), 28–42. Search in Google Scholar

eISSN:
2543-8050
Language:
English