Cite

1. Goliński, P., Waśkiewicz, A., Gromadzka, K. Mycotoxins and mycotoxicoses under climatic conditions of Poland. Polish J Vet Sci 2009;12:581-8. PMID: 20169938Search in Google Scholar

2. Antonissen G, Martel A, Pasmans F, Ducatelle R, Verbrugghe E, Vandenbroucke V, Li S, Haesebrouck F, van Immerseel F, Croubels S. The impact of Fusarium mycotoxins on human and animal host susceptibility to infectious diseases. Toxins (Basel) 2014;6:430-52. doi: 10.3390/toxins6020430Search in Google Scholar

3. Bhatnagar D, Yu J, Ehrlich KC. Toxins of filamentous fungi. Chem Immunol 2002;81:167-206. doi: 10.1159/000058867Search in Google Scholar

4. Marin S, Ramos AJ, Cano-Sancho G, Sanchis V. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food Chem Toxicol 2013;60:218-37. doi: 10.1016/j.fct.2013.07.04Search in Google Scholar

5. Adeyeye SAO. Fungal mycotoxins in foods: A review. Cogent Food Agric 2016; 2: 1213127. doi: 10.1080/23311932.2016.1213127Search in Google Scholar

6. Tola M, Kebede B. Occurrence, importance and control of mycotoxins: A review. Cogent Food Agric 2016;2:1191103. doi: 10.1080/23311932.2016.1191103Search in Google Scholar

7. Bryden WL. Mycotoxin contamination of the feed supply chain: implications for animal productivity and feed security. Animal Feed Sci Technol 2012;173:134-58. doi: 10.1016/j. anifeedsci.2011.12.014Search in Google Scholar

8. Han Z, Nie D, Ediage EN, Yang X, Wang J, Chen B, Li S, On SL, De Saeger S, Wu A. Cumulative health risk assessment of co-occurring mycotoxins of deoxynivalenol and its acetyl derivatives in wheat and maize: case study, Shanghai, China. Food Chem Toxicol 2014;74:334-42. doi: 10.1016/j.fct.2014.10.018Search in Google Scholar

9. Bennett JW, Klich M. Mycotoxins. Clin Microbiol Rev 2003;16:497-516. doi: 10.1128/CMR.16.3.497-516.2003 Search in Google Scholar

10. Calado T, Venancio A, Abrunhosa L. Irradiation for mold and mycotoxin control: a review. Compr Rev Food Sci Food Saf 2014;13:1049-61. doi: 10.1111/1541-4337.12095Search in Google Scholar

11. de Nijs M, Mengelers MJB, Boon PE, Heyndrickx E, Hoogenboom LAP, Lopez P, Mol HGJ. Strategies for estimating human exposure to mycotoxins via food. World Mycotoxin J 2016;9:831-45. doi: 10.3920/WMJ2016.2045Search in Google Scholar

12. Gnonlonfin GJB, Adjovi YC, Tokpo AF, Agbekponouc ED, Ameyapohc Y, de Souzac C, Brimerd L, Sannib A. Mycobiota and identification of aflatoxin gene cluster in marketed spices in West Africa. Food Control 2013;34:115-20. doi: 10.1016/j. foodcont.2013.04.021Search in Google Scholar

13. Iqbal SA, Khalil IA, Shah H. Aflatoxin contents of stored and artificially inoculated cereals and nuts. Food Chem 2006;98:699-703. doi: 10.1016/j.foodchem.2005.06.034Search in Google Scholar

14. Lewis L, Onsongo M, Njapau H. Aflatoxin contamination of commercial maize products during an outbreak of acute aflatoxicosis in eastern and central Kenya. Environ Health Perspect 2005;113:1763-7. doi: 10.1289/ehp.7998Search in Google Scholar

15. Mushtaq M, Sultana B, Anwar F, Khan MZ, Ashrafuzzaman M. Occurrence of aflatoxins in selected processed foods from Pakistan. Int J Mol Sci 2012;13:8324-37. doi: 10.3390/ijms13078324Search in Google Scholar

16. Offiah N, Adesiyun A. Occurrence of aflatoxins in peanuts, milk, and animal feed in Trinidad. J Food Prot 2007;70:771-5. doi: 10.4315/0362-028X-70.3.771Search in Google Scholar

17. Ratnavathi CV, Komala VV, Kumar BS, Das IK, Patil JV. Natural occurrence of aflatoxin B1 in sorghum grown in different geographical regions of India. J Sci Food Agric 2012;92:2416-20. doi: 10.1002/jsfa.5646Search in Google Scholar

18. Romagnoli B, Menna V, Gruppioni N, Bergamini C. Aflatoxins in spices, aromatic herbs, herb-teas and medicinal plants marketed in Italy. Food Control 2007;18:697-701. doi: 10.1016/j.foodcont.2006.02.020Search in Google Scholar

19. Fazekas B, Tar AK, Zomborszky-Kovács M. Ochratoxin a contamination of cereal grains and coffee in Hungary in the year 2001. Acta Vet Hung 2002;50:177-88. doi: 10.1556/AVet.50.2002.2.7Search in Google Scholar

20. Llorent-Martínez EJ, Ortega-Barrales P, Fernández-de Córdova ML, Ruiz-Medina A. Quantitation of ochratoxin a in cereals and feedstuff using sequential injection analysis with luminescence detection. Food Control 2013;30:379-85. doi: 10.1016/j.foodcont.2012.07.036Search in Google Scholar

21. Meucci V, Costa E, Razzuoli E. Occurrence of ochratoxin A in blood of Italian slaughtered pigs. Toxicol Lett 2005:158(1 Suppl):S116.Search in Google Scholar

22. Terra MF, Prado G, Pereira GE, Ematné HJ, Batista LR. Detection of ochratoxin A in tropical wine and grape juice from Brazil. J Sci Food Agric 2013;93:890-4. doi: 10.1002/jsfa.5817Search in Google Scholar

23. Varga J, Kozakiewicz Z. Ochratoxin A in grapes and grapederived products. Trends Food Sci Technol 2006;17:72-81. doi: 10.1016/j.tifs.2005.10.007Search in Google Scholar

24. Aniołowska M, Steininger M. Determination of trichothecenes and zearalenone in different corn (Zea mays) cultivars for human consumption in Poland. J Food Composit Anal 2014;33:14-9. doi: 10.1016/j.jfca.2013.09.008Search in Google Scholar

25. dos Santos JS, Souza TM, Ono EYS, Hashimoto EH, Bassoi MC, de Mirande MZ, Itano EN, Kawamura O, Hirooka EY. Natural occurrence of deoxynivalenol in wheat from Paraná State, Brazil and estimated daily intake by wheat products. Food Chem 2013; 138: 90-5. doi: 10.1016/j.foodchem.2012.09.100Search in Google Scholar

26. Goliński P, Waśkiewicz A, Wiśniewska H, Kiecana I, Mielniczuk E, Gromadzka K, Kostecki M, Bocianowski J, Rymaniak E. Reaction of winter wheat (Triticum aestivum L.) cultivars to infection with Fusarium spp.: mycotoxin contamination in grain and chaff. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2010;27:1015-24. doi: 10.1080/19440041003702208Search in Google Scholar

27. Gonzalez Pereyra ML, Pereyra CM, Ramirez ML, Rosa CAR, Dalcero AM, Cavaglieri LR. Determination of mycobiota and mycotoxins in pig feed in central Argentina. Lett Appl Microbiol 2008; 46: 555-61. doi:10.1111/j.1472-765X.2008.02347.xSearch in Google Scholar

28. Montes R, Segarra R, Castillo MA. Trichothecenes in breakfast cereals from the Spanish retail market. J Food Compost Anal 2012;27:38-44. doi: 10.1016/j.jfca.2012.05.004Search in Google Scholar

29. Pacin A, Ciancio Bovier E, Cano G, Taglieri D, Pezzani HC. Effect of the bread making process on wheat flour contaminated by deoxynivalenol and exposure estimate. Food Control 2010;21:492-5. doi: 10.1016/j.foodcont.2009.07.012Search in Google Scholar

30. Sampietro DA, Fauguel CM, Vattuone MA, Presello DA, Catalan CAN. Phenylpropanoids from maize pericarp: resistance factors to kernel infection and fumonisin accumulation by Fusarium verticillioides. Eur J Plant Pathol 2013;135:105-13. doi: 10.1007/s10658-012-0069-3Search in Google Scholar

31. Tajehmiri A, Aliabadi MA, Darsanaki RK. Occurrence of deoxynivalenol in cereals and cereal based products: a short review. Scientific J Biol Sci 2014;3:1-5.Search in Google Scholar

32. Wiśniewska H, Stępień Ł, Waśkiewicz A, Beszterda M, Góral T, Belter J. Toxigenic Fusarium species infecting wheat heads in Poland. Cent Eur J Biol 2014;9:163-72. doi: 10.2478/s11535-013-0262-1Search in Google Scholar

33. Yazar S, Omurtag GZ. Fumonisins, trichothecenes and zearalenone in cereals. Int J Mol Sci 2008;9:2062-90. doi: 10.3390/ijms9112062Search in Google Scholar

34. Yazdanpanah H, Shafaati A, Foroutan SM, Zarghi A, Aboul- Fathi F, Khoddam A, Shaki F, Nazari F. Occurrence of deoxynivalenol in foods for human consumption from Tehran, Iran. Iran J Pharmaceut Res 2014;13(Suppl):87-92.PMCID: PMC3977057Search in Google Scholar

35. Cano-Sancho G, Marin S, Ramos AJ, Sanchis V. Occurrence of zearalenone, an oestrogenic mycotoxin, in Catalonia (Spain) and exposure assessment. Food Chem Toxicol 2012;50:835-9. doi: 10.1016/j.fct.2011.11.049Search in Google Scholar

36. Döll S, Dänicke S. The Fusarium toxins deoxynivalenol (DON) and zearalenone (ZON) in animal feeding. Prev Vet Med 2011;102:132-45. doi: 10.1016/j.prevetmed.2011.04.008Search in Google Scholar

37. Hewitt TC, Flack CL, Kolodziejczyk JK, Chacon AM, D’Ovidio KL. Occurrence of zearalenone in fresh corn and corn products collected from local Hispanic markets in San Diego County, CA. Food Control 2012;26:300-4. doi: 10.1016/j.foodcont.2012.01.035Search in Google Scholar

38. Seeling K, Dänicke S. Relevance of the Fusarium toxins deoxynivalenol and zearalenone in ruminant nutrition. A review. J Anim Feed Sci 2005;14:3-40. doi: 10.22358/jafs/66965/2005Search in Google Scholar

39. Streit E, Schatzmayr G, Tassis P, Tzika E, Marin D, Taranu I, Tabuc C, Nicolau A, Aprodu I, Puel O, Oswald IP. Current situation of mycotoxin contamination and co-occurrence in animal feed-focus on Europe. Toxins (Basel) 2012;4:788-809. doi: 10.3390/toxins410078Search in Google Scholar

40. Waśkiewicz A, Gromadzka K, Wiśniewska H, Goliński P. Accumulation of zearalenone in genotypes of spring wheat after inoculation with Fusarium culmorum. Cereal Res Commun 2008;36(Suppl 6):401-4.Search in Google Scholar

41. Feng YZ, Lu XH, Tao B, Pang MH, Liu YC, Dong JG. Natural occurrence of fumonisins B1 and B2 in corn from three main production provinces in China. J Food Prot 2011;8:1374-8. doi: 10.4315/0362-028X.JFP-11-103Search in Google Scholar

42. Ghiasian SA, Rezayat SM, Kord-Bacheh P, Maghsood AH, Yazdanpanah H, Shephard GS, van der Westhuizen L, Vismer HF, Marasas WFO. Fumonisin production by Fusarium species isolated from freshly harvested corn in Iran. Mycopathologia 2005;159:31-40. doi: 10.1007/s11046-004-3899-5Search in Google Scholar

43. Martins FA, Ferreira FMD, Ferreira FD, Bando E, Nerilo SB, Hirooka EY, Machinski Jr M. Daily intake estimates of fumonisins in corn-based food products in the population of Parana, Brazil. Food Control 2012;26:614-8. doi: 10.1016/j. foodcont.2012.02.019Search in Google Scholar

44. Waśkiewicz A, Stępień Ł, Wilman K, Kachlicki P. Diversity of pea-associated F. proliferatum and F. verticillioides populations revealed by FUM1 sequence analysis and fumonisin biosynthesis. Toxins (Basel) 2013;5:488-503. doi: 10.3390/toxins5030488Search in Google Scholar

45. Beltran E, Ibanez M, Sancho VJ, Hernández F. Determination of patulin in apple and derived products by UHPLC-MS/MS. Study of matrix effects with atmospheric pressure ionisation sources. Food Chem 2014;142:400-7. doi: 10.1016/j.foodchem.2013.07.069Search in Google Scholar

46. Bragulat MR, Abarca ML, Cabañes FJ. Low occurrence of patulin- and citrinin-producing species isolated from grapes. Lett Appl Microbiol 2008; 47: 286-9. doi: 10.1111/j.1472-765X.2008.02422.xSearch in Google Scholar

47. Marin S, Mateo EM, Sanchis V, Valle-Algarra FM, Ramos AJ, Jiménez M. Patulin contamination in fruit derivatives, including baby food, from the Spanish market. Food Chem 2011;124:563-8. doi: 10.1016/j.foodchem.2010.06.072Search in Google Scholar

48. Zain ME. Impact of mycotoxins on humans and animals. J Saudi Chem Soc 2011;15:129-44. doi: 10.1016/j.jscs.2010.06.006Search in Google Scholar

49. Hussein HS, Brasel JM. Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology 2001;167:101-34. doi: 10.1016/S0300-483X(01)00471-1Search in Google Scholar

50. Assunção R, Silva MJ, Alvito P. Challenges in risk assessment of multiple mycotoxins in food. World Mycotoxin J 2016;9:791-811. doi: 10.3920/WMJ2016.2039Search in Google Scholar

51. Pierron A, Alassane-Kpembi I, Oswald IP. Impact of mycotoxin on immune response and consequences for pig health. Anim Nutr 2016;2:63-8. doi: 10.1016/j.aninu.2016.03.001Search in Google Scholar

52. Magan N, Aldred D, Mylona K, Lambert RJ. Limiting mycotoxins in stored wheat. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2010;27:644-50. doi: 10.1080/19440040903514523Search in Google Scholar

53. Magan N, Aldred D. Post-harvest control strategies: minimizing mycotoxins in the food chain. Int J Food Microbiol 2007; 119: 131-9. doi: 10.1016/j.ijfoodmicro.2007.07.034Search in Google Scholar

54. Kabak B, Dobson ADW. Biological strategies to counteract the effects of mycotoxins. J Food Prot 2009;72:2006-16. doi: 10.4315/0362-028X-72.9.2006Search in Google Scholar

55. Kabak B, Dobson AD, Var I. Strategies to prevent mycotoxin contamination of food and animal feed: a review. Crit Rev Food SciNutr 2006; 46: 593-619. doi: 10.1080/10408390500436185Search in Google Scholar

56. Karlovsky P, Suman M, Berthiller F, De Meester J, Eisenbrand G, Perrin I, Oswald IP, Speijers G, Chiodini A, Recker T, Dussort P. Impact of food processing and detoxification treatments on mycotoxin contamination. Mycotoxin Res 2016;32:179-205. DOI: 10.1007/s12550-016-0257-710.1007/s12550-016-0257-7Open DOISearch in Google Scholar

57. Ji C, Fan Y, Zhao L. Review on biological degradation of mycotoxins. Anim Nutr 2016;2:127-33. doi: 10.1016/j.aninu.2016.07.003Search in Google Scholar

58. Tsitisigiannis DI, Dimakopoulou M, Antoniou PP, Tjamos EC. Biological control strategies of mycotoxigenic fungi and associated mycotoxins in Mediterranean basin crops. Phytopathol Mediterr 2012;51:158-74. doi: 10.14601/ Phytopathol_Mediterr-9497Search in Google Scholar

59. Inan F, Pala M, Doymaz I. Use of ozone in detoxification of aflatoxin B1 in red pepper. J Stored Prod Res 2007;43:425-9. doi: 10.1016/j.jspr.2006.11.004Search in Google Scholar

60. McKenzie KS, Sarr AB, Mayura K, Bailey RH, Miller DR, Rogers TD, Norred WP, Voss KA, Plattner RD, Kubena LF, Phillips D. Oxidative degradation and detoxification of mycotoxins using a novel source of ozone. Food Chem Toxicol 1997;35:807-20. PMID: 935022610.1016/S0278-6915(97)00052-5Open DOISearch in Google Scholar

61. McDonough MX, Campabadal CA, Mason LJ, Maier DE, Denvir A, Woloshuk C. Ozone application in a modified screw conveyor to treat grain for insect pests, fungal contaminants, and mycotoxins. J Stored Prod Res 2011;47:249-54. doi: 10.1016/j.jspr.2011.04.001Search in Google Scholar

62. de Alencar ER, Faroni LRD, Soares NFF, da Silva WA, da Silva Carvalho MC. Efficacy of ozone as a fungicidal and detoxifying agent of aflatoxins in peanuts. J Sci Food Agric 2012;92:899-905. doi: 10.1002/jsfa.466Search in Google Scholar

63. Fouler SG, Trivedi AB, Kitabatake N. Detoxification of citrinin74 and ochratoxin A by hydrogen peroxide. J AOAC Int 1994;77:631-7. PMID: 801221210.1093/jaoac/77.3.631Search in Google Scholar

64. di Stefano V, Pitonzo R, Avellone G. Effect of gamma irradiation on aflatoxins and ochratoxin a reduction in almond samples. J Food Res 2014;3:113-8. doi: 10.5539/jfr.v3n4p113Search in Google Scholar

65. Ghanem I, Orfi M, Shamma M. Effect of gamma radiation on the inactivation of aflatoxin B1 in food and feed crops. Braz J Microbiol 2008;39:787-91. doi: 10.1590/S1517-838220080004000035Search in Google Scholar

66. Weng CY, Martinez AJ, Park DL. Efficacy and permanency of ammonia treatment in reducing aflatoxin levels in corn. Food Addit Contam 1994;11: 649-58. doi: 10.1080/02652039409374266Search in Google Scholar

67. Oliveira G, da Silva DM, Pereira RGFA, Paiva LC, Prado G, Batista LR. Effect of different roasting levels and particle sizes on ochratoxin a concentration in coffee beans. Food Control 2013;34:651-6. doi: 10.1016/j.foodcont.2013.06.014Search in Google Scholar

68. Bittner A, Cramer B, Harrer H, Humpf H-U. Structure elucidation and in vitro cytotoxicity of ochratoxin alpha amide, a new degradation product of ochratoxin A. Mycotoxin Res 2015;31:83-90. doi: 10.1007/s12550-014-0218-ySearch in Google Scholar

69. Rempe I, Kersten S, Valenta H, Dänicke S. Hydrothermal treatment of naturally contaminated maize in the presence of sodium metabisulfite, methylamine and calcium hydroxide; effects on the concentration of zearalenone and deoxynivalenol. Mycotoxin Res 2013;29:169-75. doi: 10.1007/s12550-013-0166-ySearch in Google Scholar

70. Kandler O. Carbohydrate metabolism in lactic acid bacteria. Antonie van Leeuwenhoek 1983;49:209-24. PMID: 635407910.1007/BF003994996354079Search in Google Scholar

71. Stiles ME, Holzapfel WH. Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol 1997;36:1-29. doi: 10.1016/S0168-1605(96)01233-0Search in Google Scholar

72. Miller N, Wetterstrom W. The beginnings of agriculture: The ancient near east and north Africa. In: Kiple K, Ornelas K, editors. The Cambridge World History of Food. Vol 2. Cambridge (UK): Cambridge Univ Press; 2000. p. 1123-39.10.1017/CHOL9780521402156.003Search in Google Scholar

73. Nuraida L. A review: Health promoting lactic acid bacteria in traditional Indonesian fermented foods. Food Sci Human Wellness 2015;4:47-55. doi: 10.1016/j.fshw.2015.06.001Search in Google Scholar

74. Wood B. Microbiology of Fermented Foods. London: Blackie; 1998. 10.1007/978-1-4613-0309-1Search in Google Scholar

75. Zannini E, Waters DM, Coffey A, Arendt EK. Production, properties, and industrial food application of lactic acid bacteria-derived exopolysaccharides. Appl Microbiol Biotechnol 2016;100:1121-35. doi: 10.1007/s00253-015-7172-2Search in Google Scholar

76. Indira K. Jayalakshmi S, Gopalakrishnan A, Srinivasan M. Biopreservative potential of marine Lactobacillus spp. Afr J Microbiol Res 2011;5:2287-96.Search in Google Scholar

77. Ndagano D, Lamoureux T, Dortu C, Vandermoten S, Thonart P. Antifungal activity of 2 lactic acid bacteria of the Weissella genus isolated from food. J Food Sci 2011;76:M305-11. doi: 10.1111/j.1750-3841.2011.02257.xSearch in Google Scholar

78. Gerez CL, Carbajo MS, Rollán G, Torres Leal G, Font de Valdez G. Inhibition of citrus fungal pathogens by using lactic acid bacteria. J Food Sci 2010;75:M354-9. doi: 10.1111/j.1750-3841.2010.01671.xSearch in Google Scholar

79. Gerez CL, Torres MJ, Font de Valdez G, Rollán G. Control of spoilage fungi by lactic acid bacteria. Biol Control 2013;64:231-7. doi: 10.1016/j.biocontrol.2012.10.009Search in Google Scholar

80. Oranusi S, Braide W, Oguoma OI. Antifungal properties of lactic acid bacteria (LAB) isolated from Ricinus communis, Pentaclethra macrophylla and yoghurts. Glo Adv Res J Food Sci Technol 2013;2:1-6.Search in Google Scholar

81. Schillinger U, Villarreal JV. Inhibition of Penicillium nordicum in MRS medium by lactic acid bacteria isolated from foods. Food Control 2010;21:107-11. doi: 10.1016/j.foodcont.2008.11.010Search in Google Scholar

82. Schaefer L, Auchtung TA, Hermans KE, Whitehead D, Borhan B, Britton RA. The antimicrobial compound reuterin (3-hydroxypropionaldehyde) induces oxidative stress via interaction with thiol groups. Microbiology 2010;156:1589-99. doi: 10.1099/mic.0.035642-0Search in Google Scholar

83. Dalbello F, Clarke C, Ryan L, Ulmer H, Schober T, Ström K, Sjögren J, Vansinderen D, Schnurer J, Arendt E. Improvement of the quality and shelf life of wheat bread by fermentation with the antifungal strain Lactobacillus plantarum FST 1.7. J Cereal Sci 2007;45:309-18. doi: 10.1016/j.jcs.2006.09.004Search in Google Scholar

84. Mandal V, Sen SK, Mandal NC. Detection, isolation and partial characterization of antifungal compound(s) produced by Pediococcus acidilactici LAB 5. Nat Prod Commun2007;2:671-4.10.1177/1934578X0700200610Search in Google Scholar

85. Gerez LC, Torino IM, Rollan G, de Valdez FG. Prevention of bread mould spoilage by using lactic acid bacteria with antifungal properties. Food Control 2009;20:144-8. doi: 10.1016/j.foodcont.2008.03.005Search in Google Scholar

86. Prema P, Smila D, Palavesam A, Immanuel G. Production and characterization of an antifungal compound (3-phenyllactic acid) produced by Lactobacillus plantarum strain. Food Bioprocess Tech 2010;3:379-86.10.1007/s11947-008-0127-1Open DOISearch in Google Scholar

87. Schwenninger S, Lacroix C, Truttmann S, Jans C, Spörndli C, Bigler L. Characterization of low-molecular-weight antiyeast metabolites produced by a food-protective Lactobacillus-Propionibacterium coculture. J Food Prot2008;71, 2481-7. PMID: 1924490210.4315/0362-028X-71.12.248119244902Search in Google Scholar

88. Yang EJ, Chang HC. Purification of a new antifungal compound produced by Lactobacillus plantarum AF1 isolated from kimchi. Int J Food Microbiol 2010;139:56-63. doi: 10.1016/j.ijfoodmicro.2010.02.012Search in Google Scholar

89. Eklund T. Organic acids and esters. In: Gould GW, editor. Mechanisms of Action of Food Preservation Procedures. London: Elsevier Applied Science; 1989. p. 161-200.Search in Google Scholar

90. Woolford MK. The antimicrobial spectra of some salts oforganic acids and glutaraldehyde in respect to their potential as silage additives. Grass Forage Sci 1984;39:53-7. doi: 10.1111/j.1365-2494.1984.tb01664.xSearch in Google Scholar

91. Langa S, Martín-Cabrejas I, Montiel R, Landete JM, Medina M, Arqués JL. Combined antimicrobial activity of reuterin and diacetyl against foodborne pathogens. J Dairy Sci 2014;97:6116-21. doi: 10.3168/jds.2014-8306Search in Google Scholar

92. Corsetti A, Gobetti M, Rossi J, Damiani P. Antimould activity of sourdough lactic acid bacteria: identification of a mixture of organic acids produced by Lactobacillus sanfrancisco CB1. Appl Microbiol Biotechnol 1989;50:253-6. doi: 10.1007/s002530051285Search in Google Scholar

93. Dalié DKD, Deschamps AM, Richard-Forget F. Lactic acid bacteria - Potential for control of mould growth and mycotoxins: A review. Food Control 2010;21:370-80. doi: 10.1016/j.foodcont.2009.07.011Search in Google Scholar

94. Bovo F, Corassin CH, Rosim RE, de Oliveira CAF. Efficiency of lactic acid bacteria strains for decontamination of aflatoxin M1 in phosphate buffer saline solution and in skimmed milk. Food Bioprocess Technol 2013;6:2230-4. doi: 10.1007/s11947-011-0770-9Search in Google Scholar

95. Suarez-Quiroz ML, Gonzalez-Rios O, Champion-Martinez EI, Angulo O. Effects of lactic acid bacteria isolated from fermented coffee (Coffea arabica) on growth of Aspergillus ochraceus and ochratoxin A production. In: Proceedings of 22nd International Conference on Coffee Science, ASIC 2008; 14-19 September 2008; Campinas, SP Brazil. Paris: Association Scientifique Internationale du Café (ASIC); 2008. p. 542-6. Search in Google Scholar

96. Niderkorn V, Boudra H, Morgavi DP. Binding of Fusarium mycotoxins by fermentative bacteria in vitro. J Appl Microbiol 2006;101:849-56. doi: 10.1111/j.1365-2672. 2006.02958.xSearch in Google Scholar

97. Abbès S, Salah-Abbès JB, Sharafi H, Oueslati R, Noghabi KA. Lactobacillus paracasei BEJ01 prevents immunotoxic effects during chronic zearalenone exposure in Balb/c mice. Immunopharmacol Immunotoxicol 2013;35:341-8. doi: 10.3109/08923973.2013.772194Search in Google Scholar

98. Zou ZY, He ZF, Li HJ, Han PF, Meng X, Zhang Y, Zhou F, Ouyang KP, Chen XY, Tang J. In vitro removal of deoxynivalenol and T-2 toxin by lactic acid bacteria. Food Sci Biotechnol 2012;21:1677-83. doi: 10.1007/s10068-012- 0223-xSearch in Google Scholar

99. Hawar S, Vevers W, Karieb S, Ali BK, Billington R, Beal J. Biotransformation of patulin to hydroascladiol by Lactobacillus plantarum. Food Control 2013;34:502-8. doi: 10.1016/j.foodcont.2013.05.023Search in Google Scholar

100. Zinedine A, Faid M, Benlemlih M. In vitro reduction of aflatoxin B1 by strains of lactic acid bacteria isolated from Moroccan sourdough bread. Int J Agric Biol 2005;7:67-70.Search in Google Scholar

101. Piotrowska M, Zakowska Z. The elimination of ochratoxin A by lactic acid bacteria strains. Pol J Microbiol 2005;54:279-86. PMID: 16599298Search in Google Scholar

102. El-Nezami H, Polychronaki N, Lee YK, Haskard C, Juvonen R, Salminen S, Mykkänen H. Chemical moieties and interactions involved in the binding of zearalenone to the surface of Lactobacillus rhamnosus strains GG. J Agric Food Chem 2004;52:4577-81. doi: 10.1021/jf049924mSearch in Google Scholar

103. Hatab S, Yue T, Mohamad O. Removal of patulin from apple juice using inactivated lactic acid bacteria. J Appl Microbiol 2012;112:892-9. doi: 10.1111/j.1365-2672.2012.05279.xSearch in Google Scholar

104. Franco TS, Garcia S, Hirooka EY, Ono YS, dos Santos JS. Lactic acid bacteria in the inhibition of Fusarium graminearum and deoxynivalenol detoxification. J Appl Microbiol 2011;111:739-48. doi: 10.1111/j.1365-2672.2011.05074.xSearch in Google Scholar

105. Niderkorn V, Morgavi DP, Pujos E, Tissandier A, Boudra H. Screening of fermentative bacteria for their ability to bind and biotransform deoxynivalenol, zearalenone and fumonisins in an in vitro simulated corn silage model. Food Addit Contam 2007; 24: 406-15. doi: 10.1080/02652030601101110Search in Google Scholar

106. Bolognani F, Rumney CJ, Rowland IR. Influence of carcinogen binding by lactic acid-producing bacteria on tissue distribution and in vitro mutagenecity of dietary carcinogens. Food Chem Toxicol 1997;35:535-45. PMID: 922501110.1016/S0278-6915(97)00029-XSearch in Google Scholar

107. Orrihage KE, Sillerström E, Gustafsson JA, Nord CE, Rafter J. Binding of mutagenic heterocyclic amines by intestinal lactic acid bacteria. Mutat Res 1994;311:239-48. doi: 10.1016/0027-5107(94)90182-1Search in Google Scholar

108. Zhang XB, Ohta Y. Binding of mutagens by fractions of the cell wall skeleton of lactic acid bacteria on mutagens. J Dairy Sci 1991;74:1477-81. doi: 10.3168/jds.S0022- 0302(91)78306-9Search in Google Scholar

109. Haskard CA, El-Nezami H, Kankaanpaa PE, Salminen S, Ahokas JT. Surface binding of aflatoxin B1 by lactic acid bacteria. Appl Environ Microbiol 2001;67:3086-91. doi: 10.1128/AEM.67.7.3086-3091.2001Search in Google Scholar

110. Bueno DJ, Casale CH, Pizzolitto RP, Salano MA, Olivier G. Physical adsorption of aflatoxin B1 by lactic acid bacteria and Saccharomyces cerevisiae: A theoretical model. J Food Protect 2006;70:2148-54. doi: 10.4315/0362-028X-70.9.2148Search in Google Scholar

111. Čvek D, Markov K, Frece J, Friganović M, Duraković L, Delaš F. Adhesion of zearalenone to the surface of lactic acid bacteria cells. Croat J Food Technol Biotechnol Nutr 2012;7(Special Issue):49-52.Search in Google Scholar

112. Corassin CH, Bovo F, Rosim RE, Oliveira CAF. Efficiency of Saccharomyces cerevisiae and lactic acid bacteria strains to bind aflatoxin M1 in UHT skim milk. Food Control 2013;31:80-3. doi: 10.1016/j.foodcont.2012.09.033Search in Google Scholar

113. Khoury AE, Atoui A, Yaghi J. Analysis of aflatoxin M1 in milk and yogurt and AFM1 reduction by lactic acid bacteria used in Lebanese industry. Food Control 2011;22:1695-9. doi: 10.1016/j.foodcont.2011.04.001Search in Google Scholar

114. Dogi CA, Fochesato A, Armando R, Pribull B, de Souza MMS, da Silva Coelho I, Araújo de Melo D, Dalcero A, Cavaglieri L. Selection of lactic acid bacteria to promote an efficient silage fermentation capable of inhibiting the activity of Aspergillus parasiticus and Fusarium gramineraum and mycotoxin production. J Appl Microbiol 2013;114:1650-60.doi: 10.1111/jam.1217Search in Google Scholar

115. Fazeli MR, Hajimohammadali M, Moshkani A, Samadi N, Jamalifar H, Khoshayand MR, Vaghari E, Pouragahi S. Aflatoxin B1 binding capacity of autochthonous strains of lactic acid bacteria. J Food Protect 2009;72:189-92. doi: 10.4315/0362-028X-72.1.189Search in Google Scholar

116. Sezer C, Güven A, Bilge Oral N, Vatansever L. Detoxification of aflatoxin B1 by bacteriocins and bacteriocinogenic lactic acid bacteria. Turk J Vet Anim Sci 2013;37:594-601. doi:10.3906/vet-1301-31Search in Google Scholar

117. Motameny R, Sadeghi AA, Dehghan-Banadaky M, Chamani M, Abolhassani M. Effect of some acid treated bacteria on reduction of impure aflatoxin B1 in ruminant gastrointestinal model. J Am Sci 2012;7:213-7.Search in Google Scholar

118. Oluwafemi F, Kumar M, Bandyopadhyay R, Ogunbanwo T, Ayanwande KB. Bio-detoxification of aflatoxin B1 in artificially contaminated maize grains using lactic acid bacteria. ToxinsRev 2010; 29: 115-22.10.3109/15569543.2010.51255610.3109/15569543.2010.512556Search in Google Scholar

119. Serrano-Niño JC, Cavazos-Garduño A, Hernandez-Mendoza A, Applegate B, Ferruzzi MG, San Martin-González MF, García HS. Assessment of probiotic strains ability to reduce the bioaccessibility of aflatoxin M1 in artificially contaminated milk using an in vitro digestive model. Food Control 2013;31:202-7. doi: 10.1016/j.foodcont.2012.09.023Search in Google Scholar

120. Elsanhoty RM, Ramadan MF, El-Gohery SS, Abol-Ela MF, Azeke MA. Ability of selected microorganisms for removing aflatoxins in vitro and fate of aflatoxins in contaminated wheat during baladi bread baking. Food Control 2013;33:287-92. doi: 10.1016/j.foodcont.2013.03.002Search in Google Scholar

121. Kabak B, Ozbey F. Assessment of the bioaccessibility of aflatoxins from various food matrices using an in vitro digestion model, and the efficacy of probiotic bacteria in reducing bioaccessibility. J Food Composit Anal 2012;27:21-31. doi: 10.1016/j.jfca.2012.04.006Search in Google Scholar

122. Kasmani FB, Torshizi MAK, Allameh AA, Shariatmadari F. Aflatoxin detoxification potential of lactic acid bacteria isolated from Iranian poultry. Iran J Vet Res 2012;13:152-5. doi: 10.22099/IJVR.2012.117Search in Google Scholar

123. Hernandez-Mendoza A, Garcia HS, Steele JL. Screening of Lactobacillus casei strains for their ability to bind aflatoxin B1. Food Chem Toxicol 2009;47:1064-8. doi: 10.1016/j. fct.2009.01.042Search in Google Scholar

124. Hernandez-Mendoza A, Guzman-de-Peña D, Garcia HS. Key role of teichoic acids on aflatoxin B1 binding by probiotic bacteria. J Appl Microbiol 2009;107:395-403. doi: 10.1111/j.1365-2672.2009.04217.xSearch in Google Scholar

125. Hathout AS, Mohamed SR, El-Nekeety AA, Hassan NS, Aly SE, Abdel-Wahha MA. Ability of Lactobacillus casei andLactobacillus reuteri to protect against oxidative stress in rats fed aflatoxins-contaminated diet. Toxicon 2011;58:179-86. doi: 10.1016/j.toxicon.2011.05.015Search in Google Scholar

126. Fernández-Jur, MG, Muzzolón JA, Dalcero AM, Magnoli CE. Effect of acid lactic bacteria isolated from faeces of healthy dogs on growth parameters and aflatoxin B1 production by Aspergillus species in vitro. Mycotoxin Res 2011;27:273-80. doi: 10.1007/s12550-011-0104-9Search in Google Scholar

127. Topcu A, Bulat T, Wishah R, Boyacı IH. Detoxification of aflatoxin B1 and patulin by Enterococcus faecium strains. Int J Food Microbiol 2010;139:202-5. doi: 10.1016/j. ijfoodmicro.2010.03.00Search in Google Scholar

128. Fuchs S, Sontag G, Stidl R, Ehrlich V, Kundi M, Knasmuller S. Detoxification of patulin and ochratoxin A, two abundant mycotoxins, by lactic acid bacteria. Food Chem Toxicol 2008;46:1398-407. doi: 10.1016/j.fct.2007.10.008Search in Google Scholar

129. Skrinjar M, Rasic JL, Stojicic V. Lowering of ochratoxin A level in milk by yoghurt bacteria and bifidobacteria. Folia Microbiol (Praha) 1996;41:26-8. Lowering of ochratoxin A level in milk by yoghurt bacteria and bifidobacteria10.1007/BF028163359090820Search in Google Scholar

130. Kapetanakou AE, Kollias JN, Drosinos EH, Skandamis PN. Inhibition of A. carbonarius growth and reduction of ochratoxin A by bacteria and yeast composites of technological importance in culture media and beverages. Int J Food Microbiol 2012; 152: 91 -9. doi: 10.1016/j.ijfoodmicro.2011.09.010Search in Google Scholar

131. Piotrowska M, Zakowska Z. The biodegradation of ochratoxin A in food products by lactic acid bacteria and baker’s yeast. Progress Biotechnol 2000;17:307-10. doi: 10.1016/S0921-0423(00)80085-4Search in Google Scholar

132. Mateo EM, Medina A, Mateo F, Valle-Algarra FM, Pardo I, Jiménez M. Ochratoxin A removal in synthetic media by living and heat-inactivated cells of Oenococcus oeni isolated from wines. Food Control 2010;21:23-8. doi: 10.1016/j. foodcont.2009.03.012Search in Google Scholar

133. Niderkorn V, Morgavi DP, Aboab B, Lemaire M, Boudra H. Cell wall component and mycotoxin moieties involved in the binding of fumonisin B1 and B2 by lactic acid bacteria. J Appl Microbiol 2009;106:977-85. doi: 10.1111/j.1365-2672. 2008.04065.xSearch in Google Scholar

134. El-Nezami H, Polychronaki N, Salminen S, Mykkänen H. Binding rather than metabolism may explain the interaction of two food-grade Lactobacillus strains with zearalenone and its derivative α-zearalenol. Appl Environ Microbiol 2002;68:3545-9. doi: 10.1128/AEM.68.7.3545-3549.2002Search in Google Scholar

135. Niderkorn V, Boudra H, Morgavi DP. Stability of the bacteriabound zearalenone complex in ruminal fluid and in simulated gastrointestinal environment in vitro. World Mycotoxin Journal 2008;1:463-7. doi: 10.3920/WMJ2007.1010Search in Google Scholar

136. Hatab S, Yue T, Mohamad O. Reduction of patulin in aqueous solution by lactic acid bacteria. J Food Sci 2012;77:M238-41. doi: 10.1111/j.1750-3841.2011.02615.xSearch in Google Scholar

137. Reddy KRN, Saritha P, Reddy CS, Muralidharan K. Aflatoxin B1 producing potential of Aspergillus flavus strains isolated from stored rice grains. Afr J Biotechnol 2009;8:3303-8. Search in Google Scholar

138. Yu J, Cleveland TE, Nierman WC, Bennett JW. Aspergillus flavus genomics: gateway to human and animal health, food safety, and crop resistance to diseases. Rev Iberoam Micol 2005;22:194-202. doi: 10.1016/S1130-1406(05)70043-7Search in Google Scholar

139. Zrari TJO. Detection of aflatoxin from some Aspergillus sp. isolated from wheat seeds. J Life Sci 2013;7:1041-7. Search in Google Scholar

140. Frisvad JC, Skouboe P, Samson RA. Taxonomic comparison of three different groups of aflatoxin producers and a new efficient producer of aflatoxin B1, sterigmatocystin and 3-O-methylsterigmatocystin, Aspergillus rambellii sp. nov. Syst Appl Microbiol 2005;28:442-53. doi: 10.1016/j. syapm.2005.02.012Search in Google Scholar

141. Ostry V, Ruprich J, Skarkova J, Prochazkova I, Kubatova A. Occurrence of the toxigenic fungi (producers of aflatoxinsand ochratoxin A) in foodstuffs in the Czech Republic 1999-2000. Mycotoxin Res 2001;17(Suppl 2):188-92. doi: 10.1007/BF03036433Search in Google Scholar

142. Jakić-Dimić D, Nešić K, Petrović M. Contamination of cereals with aflatoxins, metabolites of fungi Aspergillus flavus. Biotechnol Anim Husbandry 2009;25:1203-8.Search in Google Scholar

143. Aydin A, Gunsen U, Demirel S. Total aflatoxin, aflatoxin B1 and ochratoxin A levels in Turkish wheat flour. J Food Drug Anal 2018;16:48-53.Search in Google Scholar

144. Giray B, Girgin G, Engin AB, Aydin S, Sahin G. Aflatoxin levels in wheat samples consumed in some regions of Turkey. FoodControl 2007; 18: 23-9. doi: 10.1016/j.foodcont.2005.08.002Search in Google Scholar

145. Toteja GS, Mukherjee A, Diwakar S, Singh P, Saxena BN, Sinha KK, Sinh AK, Kumar N, Nagaraja KV, Bai G, Prasad CA, Vanchinathan S, Roy R, Parkar S. Aflatoxin B1 contamination in wheat grain samples collected from different geographical regions of India: A multicenter study. J Food Protect 2006;69:1463-7. doi: 10.4315/0362-028X-69.6.1463Search in Google Scholar

146. Battilani P, Toscano P, Van der Fels-Klerx HJ, Moretti A, Camardo Leggieri M, Brera C, Rortais A, Goumperis T, Robinson T. Aflatoxin B1 contamination in maize in Europe increases due to climate change. Sci Rep 2016;6:24328. doi: 10.1038/srep24328Search in Google Scholar

147. Saini SS, Kaur A. Aflatoxin B1: Toxicity, characteristics and analysis: Mini review. Global Adv Res J Chem Mater Sci 2012;1:63-70.Search in Google Scholar

148. Abbas HK, Cartwrihgt RD, Wie W, Shier WT. Aflatoxin and fumonisin contamination of corn (maize, Zea mays) hybrids in Arkansas. Crop Protection 2006;251-259. doi: 10.1016/j. cropro.2005.02.009Search in Google Scholar

149. Jakšić SM, Abramović BF, Prunić BZ, Mihaljev ZA, Baloš MMZ, Jajić IM, Despotović VN, Bjelica LJ. Incidence of aflatoxins and fumonisins in cereal food from Serbian market. J Agroalim Proc Technol 2011;17:108-12.Search in Google Scholar

150. Sassahara M, Pontes Netto M, Yanaka EK. Aflatoxin occurrence in foodstuff sopplied to dairy cattle and aflatoxin M1 in raw milk in the North of Parana state. Food Chem Toxicol 2005;43:981-4. doi: 10.1016/j.fct.2005.02.003Search in Google Scholar

151. Shar ZH, Sumbal GA, Sherazi STH, Bhangar MI, Nizamani SM. Natural co-occurence of aflatoxins and deoxynivalenol in poultry feed in Pakistan. Food Addit Contamin Part B Surveill 2014;7:162-7. doi: 10.1080/19393210.2013.867904Search in Google Scholar

152. Zinedine A, Juan C, Soriano JM, Idrissi L, Manes J. Limited survey for the occurrence of aflatoxins in cereals and poultry feeds from Rabat, Morocco. Int J Food Microbiol 2007;115:124-7. doi: 10.1016/j.ijfoodmicro.2006.10.013Search in Google Scholar

153. Elmholt S, Rasmussen PH. Penicillium verrucosum occurrence and ochratoxin A contents in organically cultivated grain with special reference to ancient wheat types and drying practice. Mycopathologia 2005;159:421-32. DOI: 10.1007/s11046-005-1152-510.1007/s11046-005-1152-515883729Open DOISearch in Google Scholar

154. Ostry V, Malir F, Ruprich J. Producers and important dietary sources of ochratoxin A and citrinin. Toxins (Basel) 2013;5:1574-86. doi: 10.3390/toxins5091574Search in Google Scholar

155. Reddy L, Bhoola K. Ochratoxins-food contaminants: impact on human health. Toxins (Basel) 2010;2:771-9. doi: 10.3390/ toxins2040771Search in Google Scholar

156. Noonim P, Mahakarnchanakul W, Nielsen KF, Frisvad JC, Samson RA. Isolation, identification and toxigenic potential of ochratoxin A-producing Aspergillus species from coffee beans grown in two regions of Thailand. Int J Food Microbiol 2008;128:197-202. doi: 10.1016/j.ijfoodmicro.2008.08.00Search in Google Scholar

157. Böhm J, Grajewski J, Asperger H, Cecon B, Rabus B, Razzazi E. Study on biodegradation of some A- and B-trichothecenes and ochratoxin A by use of probiotic microorganisms. Mycotoxin Res 2000;16(Suppl 1):70-4. doi: 10.1007/ BF02942985 Perczak et al. LAB efficiency against pathogenic fungi and mycotoxinsArh Hig Rada Toksikol 2018;69:32-45Search in Google Scholar

158. Gelderblom T, Jaskiewicz WCA, Marasas WFO, Thiel PG, Horak MJ, Vleggaar R, Kriek NPJ. Fumonisins-novel mycotoxins with cancer promotion activity produced by Fusarium moniliforme. Appl Environ Microbiol 1988;54:1806-11. PMCID: PMC20274910.1128/aem.54.7.1806-1811.19882027492901247Search in Google Scholar

159. Stępień Ł, Koczyk G, Waśkiewicz A. FUM cluster divergence in fumonisins-producing Fusarium species. Fungal Biol 2011;115:112-23. doi: 10.1016/j.funbio.2010.10.011Search in Google Scholar

160. Stępień Ł, Koczyk G, Waśkiewicz A. Genetic and phenotypic variation of Fusarium proliferatum isolates from different host species. J Appl Genet 2011;52:487-96. doi: 10.1007/s13353-011-0059-8Search in Google Scholar

161. Frisvad JC, Larsen TO, Thrane U, Meijer M, Varga J, Samson RA, Nielsen KF. Fumonisin and ochratoxin production in ndustrial Aspergillus niger strains. PLoS One 2011;6(8):e23496. doi: 10.1371/journal.pone.0023496Search in Google Scholar

162. Waśkiewicz A, Beszterda M, Goliński P. Occurrence of fumonisins in food - an interdisciplinary approach to the problem. Food Control 2012;26:491-9. doi: 10.1016/j.foodcont.2012.02.007Search in Google Scholar

163. Waśkiewicz A, Irzykowska L, Bocianowski J, Karolewski Z, Weber Z, Goliński P. Fusariotoxins in asparagus - their biosynthesis and migration. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2013;30:1332-8. doi: 10.1080/19440049.2013.796095Search in Google Scholar

164. Danicke S, Swiech E, Buraczewska L, Ueberschär K-H. Kinetics and metabolism of zearalenone in young female pigs. J Anim Physiol Anim Nutr 2005;89:268-76. doi: 10.1111/j.1439-0396.2005.00516.xSearch in Google Scholar

165. Ezekiel CN, Odebode AC, Fapohunda SO. Zearalenone production by naturally occurring Fusarium species on maize, wheat and soybeans from Nigeria. J Biodiver Environ Sci 2008;2:77-82.Search in Google Scholar

166. Ferreira Geraldo MR, Tessmann DJ, Kemmelmeier C. Production of mycotoxins by Fusarium graminearum isolated from small cereals (wheat, triticale and barley) affected with scab disease in Southern Brazil. Braz J Microbiol 2006;37:58-63. doi: 10.1590/S1517-83822006000100011Search in Google Scholar

167. Zwierzchowski W, Przybyłowicz M, Obremski K, Zielonka Ł, Skorska-Wyszyńska E, Gajęcka M, Polak M, Jakimiuk E, Jana B, Rybarczyk L, Gajęcki M. Level of zearalenone in blood serum and lesions in ovarian follicles of sexually immature gilts in the course of zearalenone mycotoxicosis. Pol J Vet Sci 2005;8:209-18. PMID: 16180582Search in Google Scholar

168. Abbès S, Salah-Abbès JB, Sharafi H, Noghabi KA, Oueslati R. Interaction of Lactobacillus plantarum MON03 with Tunisian Montmorillonite clay and ability of the composite to immobilize zearalenone in vitro and counteract immunotoxicity in vivo. Immunopharmacol Immunotoxicol 2012;34:944-50. doi: 10.3109/08923973.2012.674139Search in Google Scholar

169. Foroud NA, Eudes F. Trichothecenes in cereal grains. Int J Mol Sci 2009;10:147-73. PMCID: PMC266245110.3390/ijms10010147266245119333439Search in Google Scholar

170. Kushiro M. Effects of milling and cooking processes on the deoxynivalenol content in wheat. Int J Mol Sci 2008;9:2127-45. doi: 10.3390/ijms9112127Search in Google Scholar

171. Welugo SN. Factors influencing deoxynivalenol accumulation in small grain cereals. Toxins (Basel) 2012;4:1157-80. doi: 10.3390/toxins4111157Search in Google Scholar

eISSN:
0004-1254
Languages:
English, Slovenian
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Basic Medical Science, other