Open Access

Involvement of serotonergic, noradrenergic and gabaergic systems in the antinociceptive effect of a ketamine-magnesium sulfate combination in acute pain


Cite

1. Wei H, Petrovaara A: MK-801, an NMDA receptor antagonist, in the rostroventromedial medulla attenuates development of neuropathic symptoms in the rat. Neroreport 1999, 10:2933-7.10.1097/00001756-199909290-00011Search in Google Scholar

2. Garraway SM, Hochman S: Pharmacological characterization of serotonin receptor subtypes modulating primary afferent input to deep dorsal horn neurons in the neonatal rat. Br J Pharmacol 2001, 132(8):1789-98.10.1038/sj.bjp.0703983Search in Google Scholar

3. Roczniak W, Wróbel J, Dolczak L, Nowak P: Influence of central noradrenergic system lesion on the serotoninergic 5-HT3 receptor mediated analgesia in rats. Adv Clin Exp Med 2013, 22(5):629-38.Search in Google Scholar

4. Dickenson AH, Chapman V, Green GM: The pharmacology of excitatory and inhibitory amino acid-mediated events in the transmission and modulation of pain in the spinal cord. Gen Pharmacol 1997, 28(5):633-8.10.1016/S0306-3623(96)00359-XSearch in Google Scholar

5. Vaughan CW, Ingram SL, Connor MA, Christie MJ: How opioids inhibit GABA-mediated neurotransmission. Nature 1997, 390(6660):611-4.10.1038/37610Search in Google Scholar

6. Persson J: Wherefore ketamine? Current Opinion in Anaesthesiology 2010, 23:455–60.10.1097/ACO.0b013e32833b49b3Search in Google Scholar

7. Sleigh J, Harvey M, Voss L, Denny B: Ketamine-more mechanisms of action than just NMDA blockade. Trends Anaesth Crit Care 2014, 4:76-81.10.1016/j.tacc.2014.03.002Search in Google Scholar

8. Hirota K, Lambert DG. Ketamine: Ketamine: new uses for an old drug? British Journal of Anaesthesia 2011; 107:123–6.Search in Google Scholar

9. Na HS, Ryu JH, Do SH: The role of magnesium in pain. In: Magnesium in the central nervous system. Adelaide, South Australia: University of Adelaide Press; 2011, 157-165.10.1017/UPO9780987073051.012Search in Google Scholar

10. Siwek M, Wróbel A, Dudek D, Nowak G, Zieba A: The role of copper and magnesium in the pathogenesis and treatment of affective disorders. Psychiatr Pol 2005, 39(5):911-20.Search in Google Scholar

11. Decollogne S, Tomas A, Lecerf C, Adamowicz E, Seman M: NMDA receptor complex blockade by oral administration of magnesium: comparison with MK-801. Pharmacol Biochem Behav 1997, 58(1):261-8.10.1016/S0091-3057(96)00555-2Search in Google Scholar

12. Mak DO, Foskett JK: Effects of divalent cations on single-channel conduction properties of Xenopus IP3 receptor. Am J Physiol 1998, 275(1 Pt 1): C179–C188.10.1152/ajpcell.1998.275.1.C1799688849Search in Google Scholar

13. Shi J, Cui J: Intracellular Mg(2+) enhances the function of BK-type Ca(2+)-activated K(+) channels. J Gen Physiol 2001, 118:589–606.10.1085/jgp.118.5.589223384411696614Search in Google Scholar

14. Shi J, Krishnamoorthy G, Yang Y, Hu L, Chaturvedi N, Harilal D, Qin J, Cui J: Mechanism of magnesium activation of calcium-activated potassium channels. Nature 2002, 418:876–880.10.1038/nature00941Search in Google Scholar

15. Shimosawa T, Takano K, Ando K, Fujita T: Magnesium inhibits norepinephrine release by blocking N-type calcium channels at peripheral sympathetic nerve endings. Hypertension 2004, 44:897–902.10.1161/01.HYP.0000146536.68208.84Search in Google Scholar

16. Guiet-Bara A, Durlach J, Bara M: Magnesium ions and ionic channels: activation, inhibition or block – a hypothesis. Magnes Res 2007, 20:100–106.Search in Google Scholar

17. Harrison NL, Simmonds MA: Quantitative studies on some antagonists of Nmethyl-d-aspartate in slices of rat cerebral cortex. Br J Pharmacol 1985, 84:381–91.10.1111/j.1476-5381.1985.tb12922.xSearch in Google Scholar

18. MacDonald fF, Bartlett MC, Mody I, Pahapill P, Reynolds JN, Salter MW, Schneiderman JH, Pennefather PS: Action of ketamine, phencyclidine and MK-801 on NMDA receptor currents in cultured mouse hippocampal neurones. The Journal of Physiology 1991, 432: 483-508.10.1113/jphysiol.1991.sp018396Search in Google Scholar

19. Irifune M, Shimizu T, Nomoto M, Fukuda T: Ketamine-induced anesthesia involves the N-methyl-d-aspartate receptor-channel complex in mice. Brain Res. 1992, 596:1–9.10.1016/0006-8993(92)91525-JSearch in Google Scholar

20. Liu HT, Hollmann MW, Liu WH, Hoenemann CW, Durieux ME: Modulation of NMDA receptor function by ketamine and magnesium: Part I. AnesthAnalg 2001, 92:1173-81.10.1097/00000539-200105000-0001911323343Search in Google Scholar

21. Orser B, Smith D, Henderson S, Gelb A: Magnesium deficiency increases ketamine sensitivity in rats. Canadian Journal of Anesthesia 1997, 44:883–90.10.1007/BF030131669260017Search in Google Scholar

22. Queiroz-Castro P, Egger C, Redua MA, Rohrbach BW, Cox S, Doherty T: Effects of ketamine and magnesium on the minimum alveolar concentration of isoflurane in goats. Am J Vet Res 2006, 67:1962-6.10.2460/ajvr.67.12.196217144794Search in Google Scholar

23. DeRossi R, Pompermeyer CT, Silva-Neto AB, Barros AL, Jardim PH, Frazílio FO: Lumbosacral epidural magnesium prolongs ketamine analgesia in conscious sheep. Acta Cirurgica Brasileira 2012, 27:137-43.10.1590/S0102-8650201200020000722378368Search in Google Scholar

24. Savić Vujović K, Vučković S, Srebro D, Medić B, Stojanović R, Vučetić Č, Prostran M: A synergistic interaction between magnesium sulfate and ketamine on the inhibition of acute nociception in rats. Eur Rev Med Pharmacol Sci 2015, 19 (13):2503-2509.Search in Google Scholar

25. Milovanović M, Vučković S, Prostran M, Trailović S, Jovanović M: L-arginine-no system participates in the analgesic effect of flunixin meglumine in the rat. Acta Veterinaria-Beograd 2016, 66 (1):103-114.10.1515/acve-2016-0008Search in Google Scholar

26. Vučković SM, Savić Vujović KR, Srebro DP, Medić BM, Stojanović RM, Vučetić CS, Divac N, Prostran MS: The antinociceptive efficacy of morphine-ketamine-magnesium combination is influenced by the order of medication administration. Eur Rev Med Pharmacol Sci 2015, 19(17): 3286-94.Search in Google Scholar

27. Kayser V, Bourgoin S, Viguier F, Michot B, Michel Hamon M: Toward Deciphering the Respective Roles of Multiple 5-HT Receptors in the Complex Serotonin-Mediated Control of Pain. In: Pharmacology of Pain. Seattle, United States: IASP Press; 2010, 185-207.Search in Google Scholar

28. Millan MJ: Descending control of pain. Prog Neurobiol 2002, 66:355-474.10.1016/S0301-0082(02)00009-6Search in Google Scholar

29. Lopez-Garsia JA: Serotonergic modulation of spinal sensory circuits. Curr Top Med Chem 2006, 6:1987-1996.10.2174/156802606778522159Search in Google Scholar

30. Rammes G, Rupprecht R, Ferrari U, Zieglgänsberger W, Parsons CG: The N-methyl-D-aspartate receptor channel blockers memantine, MRZ 2/579 and other amino-alkyl-cyclohexanesantagonise 5-HT(3) receptor currents in cultured HEK-293 and N1E-115 cell systems in a non-competitive manner. Neurosci Lett 2001, 306(1-2):81–4.10.1016/S0304-3940(01)01872-9Search in Google Scholar

31. Koizuka S, Obata H, Sasaki M, Saito S, Goto F: Systemic ketamine inhibits hypersensitivity after surgery via descending inhibitory pathways in rats. Can J Anaesth 2005, 52(5):498e505.10.1007/BF03016530Search in Google Scholar

32. duJardin KG, Müller HK, Elfving B, Dale E, Wegener G, Sanchez C: Potential involvement of serotonergic signaling in ketamine's antidepressant actions: A critical review. Prog Neuropsychopharmacol Biol Psychiatry 2016, 71:27-38.10.1016/j.pnpbp.2016.05.007Search in Google Scholar

33. Pham TH, Mendez-David I, Defaix C, Guiard BP, Tritschler L, David DJ, Gardier AM: Ketamine treatment involves medial prefrontal cortex serotonin to induce a rapid antidepressant-like activity in BALB/cJ mice. Neuropharmacology. 2017, 112(Pt A):198-209.10.1016/j.neuropharm.2016.05.010Search in Google Scholar

34. Savić Vujović K, Vučković S, Vasović D, Medić B, Knežević N, Prostran M: Additive and antagonistic antinociceptive interactions between magnesium sulfate and ketamine in the rat formalin test. Acta Neurobiol Exp 2017, 77:132–142.10.21307/ane-2017-046Search in Google Scholar

35. Sawynok J: Topical and peripherally acting analgesics. Pharmacol Rev 2003, 55:1–20.10.1124/pr.55.1.1Search in Google Scholar

36. Sawynok J: GABAergic mechanisms of analgesia: an update. Pharmacol Biochem Behav 1987, 26(2):463-74.10.1016/0091-3057(87)90148-1Search in Google Scholar

37. Heinzel A, Steinke R, Poeppel TD, Grosser O, Bogerts B, Otto H, Northoff G: S-ketamine and GABA-A-receptor interaction in humans: an exploratory study with I-123-iomazenil SPECT. Hum Psychopharmacol 2008, 23(7):549–54.10.1002/hup.96018546441Search in Google Scholar

38. Lin LH, Chen LL, Zirrolli JA, Harris RA: General anesthetics potentiate gamma-aminobutyric acid actions on gamma-aminobutyric acid. A receptors expressed by Xenopus oocytes: lack of involvement of intracellular calcium. J Pharmacol Exp Ther 1992, 263(2):569–78.Search in Google Scholar

39. Vucković SM, Tomić MA, Stepanović-Petrović RM, Ugresić N, Prostran MS, Bosković B: The effects of alpha2-adrenoceptor agents on anti-hyperalgesic effects of carbamazepine and oxcarbazepine in a rat model of inflammatory pain. Pain 2006, 125(1-2):10-9.10.1016/j.pain.2006.04.02316777327Search in Google Scholar

40. Stoetzer C, Leffler A, Filitz J: Perioperative management of patients with opio id tolerance and misuse. Anasthesiol Intensiv med Notfallmed Schmerzther 2015, 50(2):102-11.10.1055/s-0041-10038925723604Search in Google Scholar

41. Michael H. Ossipov, Gregory O. Dussor, Frank Porreca: Central modulation of pain. J Clin Invest 2010, 120(11): 3779–3787.10.1172/JCI43766296499321041960Search in Google Scholar

42. Kubota T, Anzawa N, Hirota K, Yoshida H, Kushikata T, Matsuki A: Effects of ketamine and pentobarbital on noradrenaline release from the medial prefrontal cortex in rats. Can J Anaesth 1999, 46(4):388-92.10.1007/BF0301323510232727Search in Google Scholar

eISSN:
1820-7448
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Veterinary Medicine