Open Access

Application of targeted 2D planar chromatography in the control of ginkgolic acids in some herbal drugs and dietary supplements


Cite

1. Z. Huang, Y. Xu, Y. Huang, Ch. Liu, K. Jiang and L. Wang, Rapid determination of ginkgolic acids in Ginkgo biloba kernels and leaves by direct analysis in real time-mass spectrometry, J. Sep. Sci.40 (2017) 4857–4864; https://doi.org/10.1002/jssc.20170062610.1002/jssc.201700626Search in Google Scholar

2. H. Jaggy and E. Koch, Chemistry and biology of alkylphenols from Ginkgo biloba L, Pharmazie52 (1997) 735–738.Search in Google Scholar

3. T. A. Van Beek and M. S. Wintermans, Preparative isolation and dual column high-performance liquid chromatography of ginkgolic acids from Ginkgo biloba, J. Chromatogr. A930 (2001) 109–117; https://doi.org/10.1016/S0021-9673(01)01194-310.1016/S0021-9673(01)01194-3Search in Google Scholar

4. J. Deguchi, Y. Hasegawa, A. Takagi, S. Kutsukake, M. Kono, Y. Hirasawa, P. C. Wong, T. Kaneda and H. Morita, Four new ginkgolic acids from Ginkgo biloba, Tetrahedron Lett.55 (2014) 3788–3791; https://doi.org/10.1016/j.tetlet.2014.05.07610.1016/j.tetlet.2014.05.076Search in Google Scholar

5. M. Wang, J. Zhao, B Avula, Y.-H. Wang, C. Avonto, A. G. Chittiboyina, P. L. Wylie, J. F. Parcher and I. A. Khan, High-resolution gas chromatography/mass spectrometry method for characterization and quantitative analysis of ginkgolic acids in Ginkgo biloba plants, extracts, and dietary supplements, J. Agric. Food Chem.62 (2014) 12103–12111; https://doi.org/10.1021/jf503980f10.1021/jf503980fSearch in Google Scholar

6. D. Wang, H. Zhu, M. Li, X. Song, H. Yan, J. Yu and X. Wang, An efficient method for the preparative separation and isolation of ginkgolic acids from the sarcotesta of Ginkgo biloba L by pH-zone-refining counter-current chromatography coupled with inner-recycling mode, Ind. Crop. Prod. 126 (2018) 69–75; https://doi.org/10.1016/j.indcrop.2018.09.03410.1016/j.indcrop.2018.09.034Search in Google Scholar

7. X. Yao, G.-S. Zhou, Y.-P. Tang, Y.-F. Qian, H.-L. Guan, H. Pang, S. Zhu, X. Mo, S.-L. Su, C. Jin, Y. Qin, D.-W. Qian and J.-A. Duan, Simultaneous quantification of flavonol glycosides, terpene lactones, biflavones, proanthocyanidins, and ginkgolic acids in Ginkgo biloba leaves from fruit cultivars by ultrahigh-performance liquid chromatography coupled with triple quadrupole mass spectrometry, BioMed. Res. Int. 2013 (2013) Article ID 582591 (11 pages); https://doi.org/10.1155/2013/58259110.1155/2013/582591Search in Google Scholar

8. B. Ahlemeyer, D. Selke, C. Schaper, S. Klumpp and J. Krieglstein, Ginkgolic acids induce neuronal death and activate protein phosphatase type-2C, Eur. J. Pharmacol.430 (2001) 1–7; https://doi.org/10.1016/S0014-2999(01)01237-710.1016/S0014-2999(01)01237-7Search in Google Scholar

9. G. Baron-Ruppert and N. P. Luepke, Evidence for toxic effects of alkylphenols from Ginkgo biloba in the hen’s egg test (HET), Phytomedicine8 (2001) 133–138; https://doi.org/10.1078/0944-7113-0002210.1078/0944-7113-00022Search in Google Scholar

10. H. Hecker, R. Johannisson, E. Koch and C. P. Siegers, In vitro evaluation of the cytotoxic potential of alkylphenols from Ginkgo biloba L, Toxicology177 (2002) 167–177; https://doi.org/10.1016/S0300-483X(02)00189-010.1016/S0300-483X(02)00189-0Search in Google Scholar

11. L. Jiang, Z. H. Si, M. H. Li, H. Zhao, Y. H. Fu, Y. X. Xing, W. Hong, L. Y. Ruan, P. M. Li and J. S. Wang, 1H NMR-based metabolomics study of liver damage induced by ginkgolic acid (15:1) in mice, JPBA136 (2017) 44–54; https://doi.org/10.1016/j.jpba.2016.12.03310.1016/j.jpba.2016.12.03328063335Search in Google Scholar

12. N. Mei, X. Guo, Z. Ren, D. Kobayashi, K. Wada and L. Guo, Review of Ginkgo biloba-induced toxicity, from experimental studies to human case reports, J. Environ. Sci. Health C35 (2017) 1–28; https://doi.org/10.1080/10590501.2016.127829810.1080/10590501.2016.1278298Search in Google Scholar

13. Y. Qian, Y. Peng, E. Shang, M. Zhao, L. Yan, Z. Zhu, J. Tao, S. Su, S. Guo and J. Duan, Metabolic profiling of the hepatotoxicity and nephrotoxicity of ginkgolic acids in rats using ultra-performance liquid chromatography-high-definition mass spectrometry, Chem.-Biol. Interact.273 (2017) 11–17; https://doi.org/10.1016/j.cbi.2017.05.02010.1016/j.cbi.2017.05.020Search in Google Scholar

14. W. Schwabe, Extract from Ginkgo biloba leaves, its method of preparation and pharmaceuticals containing the extract, E. U. Pat. EP0431535 B1, 1994.Search in Google Scholar

15. C. Ude, M. Schubert-Zsilavecz and M. Wurglics, Ginkgo biloba extracts: A review of the pharmacokinetics of the active ingredients, Clin. Pharmacokin.52 (2013) 727–749; https://doi.org/10.1007/s40262-013-0074-510.1007/s40262-013-0074-5Search in Google Scholar

16. K. S. Satyan, A. K. Jaiswal, S. Ghosal and S. K. Bhattacharya, Anxiolytic activity of ginkgolic acid conjugates from Indian Ginkgo biloba, Psychopharmacology136 (1998) 148–152.10.1007/s002130050550Search in Google Scholar

17. I. Fukuda, A. Ito, G. Hirai, S. Nishimura, H. Kawasaki, H. Saitoh, K. Kimura, M. Sodeoka and M. Yoshida, Ginkgolic acid inhibits protein SUMOylation by blocking formation of the E1-SUMO intermediate, Chem. Biol.16 (2009) 133–140; https://doi.org/10.1016/j.chembiol.2009.01.00910.1016/j.chembiol.2009.01.009Search in Google Scholar

18. L. Qiao, J. Zheng, X. Jin, G. Wei, G. Wang, X. Sun and X. Li, Ginkgolic acid inhibits the invasiveness of colon cancer cells through AMPK activation, Oncol. Lett.14 (2017) 5831–5838; https://doi.org/10.3892/ol.2017.696710.3892/ol.2017.6967Search in Google Scholar

19. C. Zhou, X. Li, W. Du, Y. Feng, X. Kong, Y. Li, L. Xiao and P. Zhang, Antitumor effects of ginkgolic acid in human cancer cell occur via cell cycle arrest and decrease the Bcl-2/Bax ratio to induce apoptosis, Chemotherapy56 (2010) 393–402; https://doi.org/10.1159/00031775010.1159/000317750Search in Google Scholar

20. A. Gawron-Gzella, P. Marek, J. Chanaj and I. Matławska, Comparative analysis of pharmaceuticals and dietary supplements containing extracts from the leaves of Ginkgo biloba L, Acta Pol. Pharm.67 (2010) 335–343.Search in Google Scholar

21. S. Kressmann, W. E. Müller and H. H. Blume, Pharmaceutical quality of different Ginkgo biloba brands, J. Pharm. Pharmacol.54 (2002) 661–669; https://doi.org/10.1211/002235702177897010.1211/0022357021778970Search in Google Scholar

22. N. Fuzzati, R. Pace and F. Villa, A simple HPLC-UV method for the assay of ginkgolic acids in Ginkgo biloba extracts, Fitoterapia74 (2003) 247–256; https://doi.org/10.1016/S0367-326X(03)00040-610.1016/S0367-326X(03)00040-6Search in Google Scholar

23. K. Ndjoko, J. L. Wolfender and K. Hostettmann, Determination of trace amounts of ginkgolic acids in Ginkgo biloba L. leaf extracts and phytopharmaceuticals by liquid chromatography-electrospray mass spectrometry, J. Chromatogr. B744 (2000) 249–255.10.1016/S0378-4347(00)00316-9Search in Google Scholar

24. H. Xian-Guo, M. W. Bernart, G. S. Nolan, L. Long-Ze and M. P. Lindenmaier, High-performance liquid chromatography–electrospray ionization-mass spectrometry study of ginkgolic acid in the leaves and fruits of the ginkgo tree (Ginkgo biloba), J. Chromatogr. Sci.38 (2000) 169–173.10.1093/chromsci/38.4.16910766484Search in Google Scholar

25. R. Wang, Y. Kobayashi, Y. Lin, H. W. Rauwald, J. Yao, L. Fang, H. Qiao and K. Kuchta, HPLC quantification of all five ginkgolic acid derivatives in Ginkgo biloba extracts using 13:0 ginkgolic acid as a single marker compound, Planta Med.81 (2015) 71–78; https://doi.org/10.1055/s-0034-138331210.1055/s-0034-138331225519835Search in Google Scholar

26. C. M. Loescher, D. W. Morton, S. Razic and S. Agatonovic-Kustrin, High performance thin layer chromatography (HPTLC) and high performance liquid chromatography (HPLC) for the qualitative and quantitative analysis of Calendula officinalis - advantages and limitations, J. Pharm. Biomed. Anal. 98 (2014) 52–59; https://doi.org/10.1016/j.jpba.2014.04.02310.1016/j.jpba.2014.04.02324880991Search in Google Scholar

27. B. H. Patel, B. N. Suhagia, M. M. Patel and J. R. Patel, Simultaneous estimation of pantoprazole and domperidone in pure powder and a pharmaceutical formulation by high-performance liquid chromatography and high-performance thin-layer chromatography methods, J. AOAC Int.90 (2007) 142–146.10.1093/jaoac/90.1.142Search in Google Scholar

28. European Pharmacopoeia 8.0, Council of Europe, Strasbourg 2014.Search in Google Scholar

29. Sz. Nyiredy, Planar Chromatography. A Retrospective View for the Third Millennium, Springer Scientific Publisher, Budapest 2001.Search in Google Scholar

30. F. Rabel, J. Sherma, A review of advances in two-dimensional thin-layer chromatography, J. Liq. Chromatogr. Rel. Technol.39 (2016) 627–639; https://doi.org/10.1080/10826076.2016.121484410.1080/10826076.2016.1214844Search in Google Scholar

31. M. Łuczkiewicz, P. Migas, A. Kokotkiewicz, M. Walijewska and W. Cisowski, Two-dimensional TLC with adsorbent gradient for separation of quinolizidine alkaloids in the herb and in-vitro cultures of several Genista species, JPC17 (2004) 89–94; https://doi.org/10.1556/JPC.17.2004.2.210.1556/JPC.17.2004.2.2Search in Google Scholar

32. P. Migas and M. Świtka, TLC with an adsorbent gradient for the analysis of taxol in Taxus baccata L, JPC23 (2010) 286–288; https://doi.org/10.1556/JPC.23.2010.4.910.1556/JPC.23.2010.4.9Search in Google Scholar

33. M. Krauze-Baranowska, I. Malinowska and J. Skwierawska, TLC of flavonol truxinic esters from Pseudotsuga menziesii, JPC-Modern TLC15 (2002) 437–441.10.1556/JPC.15.2002.6.9Search in Google Scholar

34. M. Glensk, U. Sawicka, I. Mazol and W. Cisowski, 2DTLC-graft planar chromatography in the analysis of a mixture of phenolic acids, JPC-Modern TLC15 (2002) 463–465.10.1556/JPC.15.2002.6.14Search in Google Scholar

35. M. Waksmudzka-Hajnos, J. Sherma and T. Kowalska, Thin Layer Chromatography in Phytochemistry, CRC Press, Boca Raton 2011.Search in Google Scholar

eISSN:
1846-9558
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Pharmacy, other