Open Access

Confirmation of differentiation clusters’ and endoglin markers preset in porcine buccal mucosa cells


Cite

Swindle MM, Smith AC. Swine in biomedical research. Source B. Model. Biomed. Res., Humana Press; 2008; DOI:10.1007/978-1-59745-285-4_26.SwindleMMSmithACSwine in biomedical researchSource B. Model. Biomed. Res., Humana Press;200810.1007/978-1-59745-285-4_26Open DOISearch in Google Scholar

Sullivan TP, Eaglstein WH, Davis SC, Mertz P. The pig as a model for human wound healing. Wound Repair Regen. 2001;9:66–76.SullivanTPEaglsteinWHDavisSCMertzPThe pig as a model for human wound healingWound Repair Regen20019667610.1046/j.1524-475x.2001.00066.xSearch in Google Scholar

Ross JW, Fernandez de Castro JP, Zhao J, Samuel M, Walters E, Rios C, Bray-Ward P, Jones BW, Marc RE, Wang W, Zhou L, Noel JM, McCall MA, DeMarco PJ, Prather RS, Kaplan HJ. Generation of an inbred miniature pig model of retinitis pigmentosa. Investig Ophthalmol Vis Sci. 2012;53:501–7; DOI:10.1167/iovs.11-8784.RossJWFernandezde Castro JPZhaoJSamuelMWaltersERiosCBray-WardPJonesBWMarcREWangWZhouLNoelJMMcCallMADeMarcoPJPratherRSKaplanHJ.Generation of an inbred miniature pig model of retinitis pigmentosaInvestig Ophthalmol Vis Sci201253501710.1167/iovs.11-8784Open DOISearch in Google Scholar

Groenen MAM, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y, Rothschild MF, Rogel-Gaillard C, Park C, Milan D, Megens HJ, Li S, Larkin DM, Kim H, Frantz LAF, Caccamo M, Ahn H, Aken BL, Anselmo A, Anthon C, Auvil L, Schook LB, et al. Analyses of pig genomes provide insight into porcine demography and evolution. Nature. 2012;491:393–8; DOI:10.1038/nature11622.GroenenMAMArchibaldALUenishiHTuggleCKTakeuchiYRothschildMFRogel-GaillardCParkCMilanDMegensHJLiSLarkinDMKimHFrantzLAFCaccamoMAhnHAkenBLAnselmoAAnthonCAuvilLSchookLBet alAnalyses of pig genomes provide insight into porcine demography and evolutionNature2012491393810.1038/nature11622Open DOISearch in Google Scholar

Zola H, Swart B, Banham A, Barry S, Beare A, Bensussan A, Boumsell L, D. Buckley C, Bühring HJ, Clark G, Engel P, Fox D, Jin BQ, Macardle PJ, Malavasi F, Mason D, Stockinger H, Yang X. CD molecules 2006 - Human cell differentiation molecules. J Immunol Methods. 2007;319:1–5; DOI:10.1016/j.jim.2006.11.001.ZolaHSwartBBanhamABarrySBeareABensussanABoumsellLBuckley CD.BühringHJClarkGEngelPFoxDJinBQMacardlePJMalavasiFMasonDStockingerHYangXCD molecules 2006 - Human cell differentiation moleculesJ Immunol Methods20073191510.1016/j.jim.2006.11.001Open DOISearch in Google Scholar

Chan JKC, Ng CS, Hui PK. A simple guide to the terminology and application of leucocyte monoclonal antibodies. Histopathology. 1988;12:461–80; DOI:10.1111/j.1365-2559.1988.tb01967.x.ChanJKCNgCSHuiPKA simple guide to the terminology and application of leucocyte monoclonal antibodiesHistopathology1988124618010.1111/j.1365-2559.1988.tb01967.xOpen DOISearch in Google Scholar

Aruffo A, Stamenkovic I, Melnick M, Underhill CB, Seed B. CD44 is the principal cell surface receptor for hyaluronate. Cell. 1990;61:1303–13; DOI:10.1016/0092-8674(90)90694-A.AruffoAStamenkovicIMelnickMUnderhillCBSeedBCD44 is the principal cell surface receptor for hyaluronateCell19906113031310.1016/0092-8674(90)90694-AOpen DOISearch in Google Scholar

Morris R. Thy-1 in Developing Nervous Tissue (Part 1 of 2). Dev Neurosci. 1985;7:133–46; DOI:10.1159/000112283.MorrisRThy-1 in Developing Nervous Tissue (Part 1 of 2)Dev Neurosci198571334610.1159/0001122832866949Open DOISearch in Google Scholar

Boitano AE, Wang J, Romeo R, Bouchez LC, Parker AE, Sutton SE, Walker JR, Flaveny CA, Perdew GH, Denison MS, Schultz PG, Cooke MP. Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science (80- ). 2010;329:1345–8; DOI:10.1126/science.1191536.BoitanoAEWangJRomeoRBouchezLCParkerAESuttonSEWalkerJRFlavenyCAPerdewGHDenisonMSSchultzPGCookeMPAryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cellsScience (80- )20103291345810.1126/science.1191536303334220688981Open DOISearch in Google Scholar

Rodríguez-Peña A, Prieto M, Duwel A, Rivas J V., Eleno N, Pérez-Barriocanal F, Arévalo M, Smith JD, Vary CPH, Bernabeu C, López-Novoa JM. Up-regulation of endoglin, a TGF-β-binding protein, in rats with experimental renal fibrosis induced by renal mass reduction. Nephrol Dial Transplant. 2001;16:34–9; DOI:10.1093/ndt/16.suppl_1.34.Rodríguez-PeñaAPrietoMDuwelARivasJ V.ElenoNPérez-BarriocanalFArévaloMSmithJDVaryCPHBernabeuCLópez-NovoaJM.Up-regulation of endoglin, a TGF-β-binding protein, in rats with experimental renal fibrosis induced by renal mass reductionNephrol Dial Transplant20011634910.1093/ndt/16.suppl_1.3411369818Open DOISearch in Google Scholar

Rı́us C, Smith JD, Almendro N, Langa C, Botella LM, Marchuk DA, Vary CPH, Bernabéu C. Cloning of the Promoter Region of Human Endoglin, the Target Gene for Hereditary Hemorrhagic Telangiectasia Type 1. Blood. 1998;92:4677–90; DOI:10.1182/blood.v92.12.4677.Rı́usCSmithJDAlmendroNLangaCBotellaLMMarchukDAVaryCPHBernabéuC.Cloning of the Promoter Region of Human Endoglin, the Target Gene for Hereditary Hemorrhagic Telangiectasia Type 1Blood19989246779010.1182/blood.v92.12.4677Open DOISearch in Google Scholar

Bravo R. Synthesis of the nuclear protein cyclin (PCNA) and its relationship with DNA replication. Exp Cell Res. 1986;163:287–93; DOI:10.1016/0014-4827(86)90059-5.BravoRSynthesis of the nuclear protein cyclin (PCNA) and its relationship with DNA replicationExp Cell Res19861632879310.1016/0014-4827(86)90059-5Open DOISearch in Google Scholar

Travali S, Ku DH, Rizzo MG, Ottavio L, Baserga R, Calabretta B. Structure of the human gene for the proliferating cell nuclear antigen. J Biol Chem. 1989;264:7466–72.TravaliSKuDHRizzoMGOttavioLBasergaRCalabrettaBStructure of the human gene for the proliferating cell nuclear antigenJ Biol Chem198926474667210.1016/S0021-9258(18)83257-4Search in Google Scholar

Baple EL, Chambers H, Cross HE, Fawcett H, Nakazawa Y, Chioza BA, Harlalka G V., Mansour S, Sreekantan-Nair A, Patton MA, Muggenthaler M, Rich P, Wagner K, Coblentz R, Stein CK, Last JI, Taylor AMR, Jackson AP, Ogi T, Lehmann AR, Green CM, Crosby AH. Hypomorphic PCNA mutation underlies a human DNA repair disorder. J Clin Invest. 2014;124:3137–46; DOI:10.1172/JCI74593.BapleELChambersHCrossHEFawcettHNakazawaYChiozaBAHarlalkaG V.MansourSSreekantan-NairAPattonMAMuggenthalerMRichPWagnerKCoblentzRSteinCKLastJITaylorAMRJacksonAPOgiTLehmannARGreenCMCrosbyAHHypomorphic PCNA mutation underlies a human DNA repair disorderJ Clin Invest201412431374610.1172/JCI74593Open DOISearch in Google Scholar

Mailand N, Gibbs-Seymour I, Bekker-Jensen S. Regulation of PCNA-protein interactions for genome stability. Nat Rev Mol Cell Biol. 2013;14:269–82; DOI:10.1038/nrm3562.MailandNGibbs-SeymourIBekker-JensenSRegulation of PCNA-protein interactions for genome stabilityNat Rev Mol Cell Biol2013142698210.1038/nrm3562Open DOISearch in Google Scholar

Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162:156–9; DOI:10.1016/0003-2697(87)90021-2.ChomczynskiPSacchiNSingle-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extractionAnal Biochem1987162156910.1016/0003-2697(87)90021-2Open DOISearch in Google Scholar

Culty M, Miyake K, Kincade PW, Silorski E, Butcher EC, Underhill C. The hyaluronate receptor is a member of the CD44 (H-CAM) family of cell surface glycoproteins. J Cell Biol. 1990;111:2765–74; DOI:10.1083/jcb.111.6.2765.CultyMMiyakeKKincadePWSilorskiEButcherECUnderhillCThe hyaluronate receptor is a member of the CD44 (H-CAM) family of cell surface glycoproteinsJ Cell Biol199011127657410.1083/jcb.111.6.276521163691703543Open DOISearch in Google Scholar

Misra S, Hascall VC, Markwald RR, Ghatak S. Interactions between hyaluronan and its receptors (CD44, RHAMM) regulate the activities of inflammation and cancer. Front Immunol. 2015;6; DOI:10.3389/fimmu.2015.00201.MisraSHascallVCMarkwaldRRGhatakSInteractions between hyaluronan and its receptors (CD44, RHAMM) regulate the activities of inflammation and cancerFront Immunol2015610.3389/fimmu.2015.00201442208225999946Open DOISearch in Google Scholar

Laurent TC, Fraser JR. The properties and turnover of hyaluronan. Ciba Found Symp. 1986;124:9–29; DOI:10.1002/9780470513385.ch2.LaurentTCFraserJRThe properties and turnover of hyaluronanCiba Found Symp198612492910.1002/9780470513385.ch23816425Open DOISearch in Google Scholar

Clark RA, Alon R, Springer TA. CD44 and hyaluronan-dependent rolling interactions of lymphocytes on tonsillar stroma. J Cell Biol. 1996;134:1075–87; DOI:10.1083/jcb.134.4.1075.ClarkRAAlonRSpringerTACD44 and hyaluronan-dependent rolling interactions of lymphocytes on tonsillar stromaJ Cell Biol199613410758710.1083/jcb.134.4.107521209528769428Open DOISearch in Google Scholar

Basakran NS. CD44 as a potential diagnostic tumor marker. Saudi Med J. 2015;36:273–9; DOI:10.15537/smj.2015.3.9622.BasakranNSCD44 as a potential diagnostic tumor markerSaudi Med J201536273910.15537/smj.2015.3.9622Open DOISearch in Google Scholar

Matsumura Y, Tarin D. Significance of CD44 gene products for cancer diagnosis and disease evaluation. Lancet. 1992;340:1053–8; DOI:10.1016/0140-6736(92)93077-Z.MatsumuraYTarinDSignificance of CD44 gene products for cancer diagnosis and disease evaluationLancet19923401053810.1016/0140-6736(92)93077-ZOpen DOISearch in Google Scholar

Seki T, Spurr N, Obata F, Goyert S, Goodfellow P, Silver J. The human Thy-1 gene: Structure and chromosomal location. Proc Natl Acad Sci U S A. 1985;82:6657–61; DOI:10.1073/pnas.82.19.6657.SekiTSpurrNObataFGoyertSGoodfellowPSilverJThe human Thy-1 gene: Structure and chromosomal locationProc Natl Acad Sci U S A19858266576110.1073/pnas.82.19.6657Open DOISearch in Google Scholar

Killeen N. T-cell regulation: Thy-1 - Hiding in full view. Curr Biol. 1997;7:774–7; DOI:10.1016/s0960-9822(06)00402-7.KilleenNT-cell regulation: Thy-1 - Hiding in full viewCurr Biol19977774710.1016/s0960-9822(06)00402-7Open DOISearch in Google Scholar

Pont S. Thy-1: a lymphoid cell subset marker capable of delivering an activation signal to mouse T lymphocytes. Biochimie. 1987;69:315–20; DOI:10.1016/0300-9084(87)90022-8.PontSThy-1: a lymphoid cell subset marker capable of delivering an activation signal to mouse T lymphocytesBiochimie1987693152010.1016/0300-9084(87)90022-8Open DOISearch in Google Scholar

Wang Y, Yago T, Zhang N, Abdisalaam S, Alexrakis G, Rodgers W, McEver RP. Cytoskeletal regulation of CD44 membrane organization and interactions with E-selectin. J Biol Chem. 2014;289:35159–71; DOI:10.1074/jbc.M114.600767.WangYYagoTZhangNAbdisalaamSAlexrakisGRodgersWMcEverRPCytoskeletal regulation of CD44 membrane organization and interactions with E-selectinJ Biol Chem2014289351597110.1074/jbc.M114.600767427120525359776Open DOISearch in Google Scholar

Leyton L, Díaz J, Martínez S, Palacios E, Pérez LA, Pérez RD. Thy-1/ CD90 a Bidirectional and Lateral Signaling Scaffold. Front Cell Dev Biol. 2019;7; DOI:10.3389/fcell.2019.00132.LeytonLDíazJMartínezSPalaciosEPérezLAPérezRD.Thy-1/ CD90 a Bidirectional and Lateral Signaling ScaffoldFront Cell Dev Biol2019710.3389/fcell.2019.00132668999931428610Open DOISearch in Google Scholar

Craig W, Kay R, Cutler RL, Lansdorp PM. Expression of Thy-1 on human hematopoietic progenitor cells. J Exp Med. 1993;177:1331–42; DOI:10.1084/jem.177.5.1331.CraigWKayRCutlerRLLansdorpPMExpression of Thy-1 on human hematopoietic progenitor cellsJ Exp Med199317713314210.1084/jem.177.5.133121910257683034Open DOISearch in Google Scholar

An Z, Sabalic M, Bloomquist RF, Fowler TE, Streelman T, Sharpe PT. A quiescent cell population replenishes mesenchymal stem cells to drive accelerated growth in mouse incisors. Nat Commun. 2018;9; DOI:10.1038/s41467-017-02785-6.AnZSabalicMBloomquistRFFowlerTEStreelmanTSharpePTA quiescent cell population replenishes mesenchymal stem cells to drive accelerated growth in mouse incisorsNat Commun2018910.1038/s41467-017-02785-6578547629371677Open DOISearch in Google Scholar

Raff MC. Surface Antigenic Markers for Distinguishing T and B Lymphocytes in Mice. Immunol Rev. 1971;6:52–80; DOI:10.1111/j.1600-065X.1971.tb00459.x.RaffMCSurface Antigenic Markers for Distinguishing T and B Lymphocytes in MiceImmunol Rev19716528010.1111/j.1600-065X.1971.tb00459.x4108877Open DOISearch in Google Scholar

Shentu TP, Huang TS, Cernelc-Kohan M, Chan J, Wong SS, Espinoza CR, Tan C, Gramaglia I, Van Der Heyde H, Chien S, Hagood JS. Thy-1 dependent uptake of mesenchymal stem cell-derived extracellular vesicles blocks myofibroblastic differentiation. Sci Rep. 2017;7; DOI:10.1038/s41598-017-18288-9.ShentuTPHuangTSCernelc-KohanMChanJWongSSEspinozaCRTanCGramagliaIVanDer Heyde HChienSHagoodJS.Thy-1 dependent uptake of mesenchymal stem cell-derived extracellular vesicles blocks myofibroblastic differentiationSci Rep2017710.1038/s41598-017-18288-9574171629273797Open DOISearch in Google Scholar

Postnikov Y V., Kurahashi T, Zhou M, Bustin M. The Nucleosome Binding Protein HMGN1 Interacts with PCNA and Facilitates Its Binding to Chromatin. Mol Cell Biol. 2012;32:1844–54; DOI:10.1128/mcb.06429-11.PostnikovY V.KurahashiTZhouMBustinMThe Nucleosome Binding Protein HMGN1 Interacts with PCNA and Facilitates Its Binding to ChromatinMol Cell Biol20123218445410.1128/mcb.06429-11334741622393258Open DOISearch in Google Scholar

González-Magaña A, Blanco FJ. Human PCNA structure, function and interactions. Biomolecules. 2020;10; DOI:10.3390/biom10040570.González-MagañaABlancoFJHuman PCNA structure, function and interactionsBiomolecules20201010.3390/biom10040570722593932276417Open DOISearch in Google Scholar

Sourisseau T, Georgiadis A, Tsapara A, Ali RR, Pestell R, Matter K, Balda MS. Regulation of PCNA and Cyclin D1 Expression and Epithelial Morphogenesis by the ZO-1-Regulated Transcription Factor ZONAB/DbpA. Mol Cell Biol. 2006;26:2387–98; DOI:10.1128/mcb.26.6.2387-2398.2006.SourisseauTGeorgiadisATsaparaAAliRRPestellRMatterKBaldaMSRegulation of PCNA and Cyclin D1 Expression and Epithelial Morphogenesis by the ZO-1-Regulated Transcription Factor ZONAB/DbpAMol Cell Biol20062623879810.1128/mcb.26.6.2387-2398.2006Open DOISearch in Google Scholar

Mann MJ, Gibbons GH, Kernoff RS, Diet FP, Tsao PS, Cooke JP, Kaneda Y, Dzau VJ. Genetic engineering of vein grafts resistant to atherosclerosis. Proc Natl Acad Sci U S A. 1995;92:4502–6; DOI:10.1073/pnas.92.10.4502.MannMJGibbonsGHKernoffRSDietFPTsaoPSCookeJPKanedaYDzauVJGenetic engineering of vein grafts resistant to atherosclerosisProc Natl Acad Sci U S A1995924502610.1073/pnas.92.10.4502419727753833Open DOISearch in Google Scholar

Poot RA, Bozhenok L, van den Berg DLC, Steffensen S, Ferreira F, Grimaldi M, Gilbert N, Ferreira J, Varga-Weisz PD. The Williams syndrome transcription factor interacts with PCNA to target chromatic remodelling by ISWI to replication foci. Nat Cell Biol. 2004;6:1236–44; DOI:10.1038/ncb1196.PootRABozhenokLvanden Berg DLCSteffensenSFerreiraFGrimaldiMGilbertNFerreiraJVarga-WeiszPD.The Williams syndrome transcription factor interacts with PCNA to target chromatic remodelling by ISWI to replication fociNat Cell Biol2004612364410.1038/ncb119615543136Open DOISearch in Google Scholar

Dourado KMC, Baik J, Oliveira VKP, Beltrame M, Yamamoto A, Theuer CP, Figueiredo CAV, Verneris MR, Perlingeiro RCR. Endoglin: A novel target for therapeutic intervention in acute leukemias revealed in xenograft mouse models. Blood. 2017;129:2526–36; DOI:10.1182/blood-2017-01-763581.DouradoKMCBaikJOliveiraVKPBeltrameMYamamotoATheuerCPFigueiredoCAVVernerisMRPerlingeiroRCREndoglin: A novel target for therapeutic intervention in acute leukemias revealed in xenograft mouse modelsBlood201712925263610.1182/blood-2017-01-763581541864028351936Open DOISearch in Google Scholar

Rossi E, Smadja DM, Boscolo E, Langa C, Arevalo MA, Pericacho M, Gamella-Pozuelo L, Kauskot A, Botella LM, Gaussem P, Bischoff J, Lopez-Novoa JM, Bernabeu C. Endoglin regulates mural cell adhesion in the circulatory system. Cell Mol Life Sci. 2016;73:1715–39; DOI:10.1007/s00018-015-2099-4.RossiESmadjaDMBoscoloELangaCArevaloMAPericachoMGamella-PozueloLKauskotABotellaLMGaussemPBischoffJLopez-NovoaJMBernabeuCEndoglin regulates mural cell adhesion in the circulatory systemCell Mol Life Sci20167317153910.1007/s00018-015-2099-4480571426646071Open DOISearch in Google Scholar

Mitselou A, Galani V, Skoufi U, Arvanitis DL, Lampri E, Ioachim E. Syndecan-1, epithelial-mesenchymal transition markers (E-cadherin/β-catenin) and neoangiogenesis-related proteins (PCAM-1 and Endoglin) in colorectal cancer. Anticancer Res. 2016;36:2271–80.MitselouAGalaniVSkoufiUArvanitisDLLampriEIoachimESyndecan-1, epithelial-mesenchymal transition markers (E-cadherin/β-catenin) and neoangiogenesis-related proteins (PCAM-1 and Endoglin) in colorectal cancerAnticancer Res201636227180Search in Google Scholar

Rossi E, Lopez-Novoa JM, Bernabeu C. Endoglin involvement 1 in integrin-mediated cell adhesion as a putative pathogenic mechanism in Hereditary Hemorrhagic Telangectasia type 1 (HHT1). Front Genet. 2014;5; DOI:10.3389/fgene.2014.00457.RossiELopez-NovoaJMBernabeuCEndoglin involvement 1 in integrin-mediated cell adhesion as a putative pathogenic mechanism in Hereditary Hemorrhagic Telangectasia type 1 (HHT1)Front Genet2014510.3389/fgene.2014.00457428579725709613Open DOISearch in Google Scholar

Rossi E, Sanz-Rodriguez F, Eleno N, Düwell A, Blanco FJ, Langa C, Botella LM, Cabañas C, Lopez-Novoa JM, Bernabeu C. Endothelial endoglin is involved in inflammation: Role in leukocyte adhesion and transmigration. Blood. 2013;121:403–15; DOI:10.1182/blood-2012-06-435347.RossiESanz-RodriguezFElenoNDüwellABlancoFJLangaCBotellaLMCabañasCLopez-NovoaJMBernabeuCEndothelial endoglin is involved in inflammation: Role in leukocyte adhesion and transmigrationBlood20131214031510.1182/blood-2012-06-43534723074273Open DOISearch in Google Scholar

Tian H, Ketova T, Hardy D, Xu X, Gao X, Zijlstra A, Blobe GC. Endoglin Mediates Vascular Maturation by Promoting Vascular Smooth Muscle Cell Migration and Spreading. Arterioscler Thromb Vasc Biol. 2017;37:1115–26; DOI:10.1161/ATVBAHA.116.308859.TianHKetovaTHardyDXuXGaoXZijlstraABlobeGCEndoglin Mediates Vascular Maturation by Promoting Vascular Smooth Muscle Cell Migration and SpreadingArterioscler Thromb Vasc Biol20173711152610.1161/ATVBAHA.116.308859Open DOISearch in Google Scholar

Maul TM, Chew DW, Nieponice A, Vorp DA. Mechanical stimuli differentially control stem cell behavior: morphology, proliferation, and differentiation. Biomech Model Mechanobiol. 2011;10:939–53; DOI:10.1007/s10237-010-0285-8.MaulTMChewDWNieponiceAVorpDAMechanical stimuli differentially control stem cell behavior: morphology, proliferation, and differentiationBiomech Model Mechanobiol2011109395310.1007/s10237-010-0285-8Open DOISearch in Google Scholar

Diez-Marques L, Ortega-Velazquez R, Langa C, Rodriguez-Barbero A, Lopez-Novoa JM, Lamas S, Bernabeu C. Expression of endoglin in human mesangial cells: Modulation of extracellular matrix synthesis. Biochim Biophys Acta - Mol Basis Dis. 2002;1587:36–44; DOI:10.1016/S0925-4439(02)00051-0.Diez-MarquesLOrtega-VelazquezRLangaCRodriguez-BarberoALopez-NovoaJMLamasSBernabeuC.Expression of endoglin in human mesangial cells: Modulation of extracellular matrix synthesisBiochim Biophys Acta - Mol Basis Dis20021587364410.1016/S0925-4439(02)00051-0Open DOISearch in Google Scholar

Lee NY, Ray B, How T, Blobe GC. Endoglin promotes transforming growth factor β-mediated Smad 1/5/8 signaling and inhibits endothelial cell migration through its association with GIPC. J Biol Chem. 2008;283:32527–33; DOI:10.1074/jbc.M803059200.LeeNYRayBHowTBlobeGCEndoglin promotes transforming growth factor β-mediated Smad 1/5/8 signaling and inhibits endothelial cell migration through its association with GIPCJ Biol Chem2008283325273310.1074/jbc.M803059200258330618775991Open DOISearch in Google Scholar

Pérez-Gómez E, Jerkic M, Prieto M, Del Castillo G, Martín-Villar E, Letarte M, Bernabeu C, Pérez-Barriocanal F, Quintanilla M, López-Novoa JM. Impaired wound repair in adult endoglin heterozygous mice associated with lower NO bioavailability. J Invest Dermatol. 2014;134:247–55; DOI:10.1038/jid.2013.263.Pérez-GómezEJerkicMPrietoMDelCastillo GMartín-VillarELetarteMBernabeuCPérez-BarriocanalFQuintanillaMLópez-NovoaJM.Impaired wound repair in adult endoglin heterozygous mice associated with lower NO bioavailabilityJ Invest Dermatol20141342475510.1038/jid.2013.26323765132Open DOISearch in Google Scholar

Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature. 2008;453:314–21; DOI:10.1038/nature07039.GurtnerGCWernerSBarrandonYLongakerMTWound repair and regenerationNature20084533142110.1038/nature0703918480812Open DOISearch in Google Scholar

Lakshman M, Huang X, Ananthanarayanan V, Jovanovic B, Liu Y, Craft CS, Romero D, Vary CPH, Bergan RC. Endoglin suppresses human prostate cancer metastasis. Clin Exp Metastasis. 2011;28:39–53; DOI:10.1007/s10585-010-9356-6.LakshmanMHuangXAnanthanarayananVJovanovicBLiuYCraftCSRomeroDVaryCPHBerganRCEndoglin suppresses human prostate cancer metastasisClin Exp Metastasis201128395310.1007/s10585-010-9356-6304655720981476Open DOISearch in Google Scholar

Henry LA, Johnson DA, Sarrió D, Lee S, Quinlan PR, Crook T, Thompson AM, Reis-Filho JS, Isacke CM. Endoglin expression in breast tumor cells suppresses invasion and metastasis and correlates with improved clinical outcome. Oncogene. 2011;30:1046–58; DOI:10.1038/onc.2010.488.HenryLAJohnsonDASarrióDLeeSQuinlanPRCrookTThompsonAMReis-FilhoJSIsackeCM.Endoglin expression in breast tumor cells suppresses invasion and metastasis and correlates with improved clinical outcomeOncogene20113010465810.1038/onc.2010.48821042283Open DOISearch in Google Scholar

Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, Deans RJ, Keating A, Prockop DJ, Horwitz EM. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7; DOI:10.1080/14653240600855905.DominiciMLeBlanc KMuellerISlaper-CortenbachIMariniFCKrauseDSDeansRJKeatingAProckopDJHorwitzEM.Minimal criteria for defining multipotent mesenchymal stromal cellsThe International Society for Cellular Therapy position statement. Cytotherapy20068315710.1080/1465324060085590516923606Open DOISearch in Google Scholar

Anderson P, Carrillo-Gálvez AB, García-Pérez A, Cobo M, Martín F. CD105 (Endoglin)-Negative Murine Mesenchymal Stromal Cells Define a New Multipotent Subpopulation with Distinct Differentiation and Immunomodulatory Capacities. PLoS One. 2013;8; DOI:10.1371/journal.pone.0076979.AndersonPCarrillo-GálvezABGarcía-PérezACoboMMartínFCD105 (Endoglin)-Negative Murine Mesenchymal Stromal Cells Define a New Multipotent Subpopulation with Distinct Differentiation and Immunomodulatory CapacitiesPLoS One2013810.1371/journal.pone.0076979379074024124603Open DOISearch in Google Scholar

Velnar T, Bailey T, Smrkolj V. The wound healing process: An overview of the cellular and molecular mechanisms. J Int Med Res. 2009;37:1528–42; DOI:10.1177/147323000903700531.VelnarTBaileyTSmrkoljVThe wound healing process: An overview of the cellular and molecular mechanismsJ Int Med Res20093715284210.1177/14732300090370053119930861Open DOISearch in Google Scholar

Alsamman M, Sterzer V, Meurer SK, Sahin H, Schaeper U, Kuscuoglu D, Strnad P, Weiskirchen R, Trautwein C, Scholten D. Endoglin in human liver disease and murine models of liver fibrosis—A protective factor against liver fibrosis. Liver Int. 2018;38:858–67; DOI:10.1111/liv.13595.AlsammanMSterzerVMeurerSKSahinHSchaeperUKuscuogluDStrnadPWeiskirchenRTrautweinCScholtenDEndoglin in human liver disease and murine models of liver fibrosis—A protective factor against liver fibrosisLiver Int2018388586710.1111/liv.13595594765828941022Open DOISearch in Google Scholar

eISSN:
2544-3577
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Molecular Biology, Biochemistry