Cite

Evans EW. Treating Scars on the Oral Mucosa. Facial Plast Surg Clin North Am. 2017;25:89–97; DOI:10.1016/j.fsc.2016.08.008.EvansEWTreating Scars on the Oral MucosaFacial Plast Surg Clin North Am201725899710.1016/j.fsc.2016.08.008Open DOISearch in Google Scholar

Squier CA, Kremer MJ. Biology of oral mucosa and esophagus. J Natl Cancer Inst Monogr. 2001;2001:7–15; DOI:10.1093/oxfordjournals.jncimonographs.a003443.SquierCAKremerMJBiology of oral mucosa and esophagusJ Natl Cancer Inst Monogr2001200171510.1093/oxfordjournals.jncimonographs.a003443Open DOISearch in Google Scholar

Martin EA (Elizabeth A., Hine R, Oxford University Press. A dictionary of biology. Oxford University Press; 2008MartinEAElizabethAHineROxford University PressA dictionary of biologyOxford University Press200810.1093/acref/9780199204625.001.0001Search in Google Scholar

Borys S, Khozmi R, Kranc W, Bryja A, Dyszkiewicz-Konwińska M, Jeseta M, et al. Recent findings of the types of programmed cell death. Adv Cell Biol. 2017;5:43–9; DOI:10.1515/acb-2017-0004.BorysSKhozmiRKrancWBryjaADyszkiewicz-KonwińskaMJesetaMet alRecent findings of the types of programmed cell deathAdv Cell Biol2017543910.1515/acb-2017-0004Open DOISearch in Google Scholar

Schulz BS, Michel G, Wagner S, Süss R, Beetz A, Peter RU, et al. Increased expression of epidermal IL-8 receptor in psoriasis. Down-regulation by FK-506 in vitro. J Immunol. 1993;151:4399–406;SchulzBSMichelGWagnerSSüssRBeetzAPeterRUet alIncreased expression of epidermal IL-8 receptor in psoriasis. Down-regulation by FK-506 in vitroJ Immunol1993151439940610.4049/jimmunol.151.8.4399Search in Google Scholar

Bigliardi-Qi M, Bigliardi PL, Eberle AN, Büchner S, Rufli T. beta-endorphin stimulates cytokeratin 16 expression and downregulates mu-opiate receptor expression in human epidermis. J Invest Dermatol. 2000;114:527–32; DOI:10.1046/j.1523-1747.2000.00801.x.Bigliardi-QiMBigliardiPLEberleANBüchnerSRufliTbeta-endorphin stimulates cytokeratin 16 expression and downregulates mu-opiate receptor expression in human epidermisJ Invest Dermatol20001145273210.1046/j.1523-1747.2000.00801.xOpen DOISearch in Google Scholar

Grewe M, Gyufko K, Budnik A, Ruzicka T, Olaizola-Horn S, Berneburg M, et al. Interleukin-1 receptors type I and type II are differentially regulated in human keratinocytes by ultraviolet B radiation. J Invest Dermatol. 1996;107:865–70;GreweMGyufkoKBudnikARuzickaTOlaizola-HornSBerneburgMet alInterleukin-1 receptors type I and type II are differentially regulated in human keratinocytes by ultraviolet B radiationJ Invest Dermatol199610786570Search in Google Scholar

Bryja A, Dyszkiewicz-Konwińska M, Budna J, Ciesiółka S, Kranc W, Borys S, et al. Expression of cell mitotic progression proteins and keratinocyte markers in porcine buccal pouch mucosal cells during short-term, real-time primary culture. J Biol Regul Homeost Agents. n.d.;31:297–309;BryjaADyszkiewicz-KonwińskaMBudnaJCiesiółkaSKrancWBorysSet alExpression of cell mitotic progression proteins and keratinocyte markers in porcine buccal pouch mucosal cells during short-term, real-time primary cultureJ Biol Regul Homeost Agentsn.d31297309Search in Google Scholar

Bryja A, Dyszkiewicz-Konwińska M, Chachuła A, Ciesiółka S, Kranc W, Bukowska D, et al. Differential expression and distribution of cytokeratins and vimentin in buccal pouch mucosal cells during real-time cell proliferation: research based on a porcine model. J Biol Regul Homeost Agents. n.d.;30:951–60;BryjaADyszkiewicz-KonwińskaMChachułaACiesiółkaSKrancWBukowskaDet alDifferential expression and distribution of cytokeratins and vimentin in buccal pouch mucosal cells during real-time cell proliferation: research based on a porcine modelJ Biol Regul Homeost Agentsn.d3095160Search in Google Scholar

Huang DW, Sherman BT, Tan Q, Collins JR, Alvord WG, Roayaei J, et al. The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol. 2007;8:R183; DOI:10.1186/gb-2007-8-9-r183.HuangDWShermanBTTanQCollinsJRAlvordWGRoayaeiJet alThe DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene listsGenome Biol20078R18310.1186/gb-2007-8-9-r183Open DOISearch in Google Scholar

Dyszkiewicz-Konwińska M, Nawrocki MJ, Huang Y, Bryja A, Celichowski P, Jankowski M, et al. New gene markers for metabolic processes and homeostasis in porcine buccal pouch mucosa during cells long term-cultivation—a primary culture approach. Int J Mol Sci. 2018;19:1027; DOI:10.3390/ijms19041027.Dyszkiewicz-KonwińskaMNawrockiMJHuangYBryjaACelichowskiPJankowskiMet alNew gene markers for metabolic processes and homeostasis in porcine buccal pouch mucosa during cells long term-cultivation—a primary culture approachInt J Mol Sci201819102710.3390/ijms19041027Open DOISearch in Google Scholar

Bryja A, Dyszkiewicz-Konwińska M, Budna J, Kranc W, Chachuła A, Borys S, et al. The biomedical aspects of oral mucosal epithelial cell culture in mammals. J Biol Regul Homeost Agents. 2017;31:81–5;BryjaADyszkiewicz-KonwińskaMBudnaJKrancWChachułaABorysSet alThe biomedical aspects of oral mucosal epithelial cell culture in mammalsJ Biol Regul Homeost Agents201731815Search in Google Scholar

Bryja A, Dyszkiewicz-Konwińska M, Budna J, Kranc W, Chachuła A, Ciesiółka S, et al. Kancerogeneza w obrȩbie błony śluzowej jamy ustnej ssaków w aspekcie badań biomedycznych. Med Weter. 2017;73:82–7; DOI:10.21521/mw.5641.BryjaADyszkiewicz-KonwińskaMBudnaJKrancWChachułaACiesiółkaSet alKancerogeneza w obrȩbie błony śluzowej jamy ustnej ssaków w aspekcie badań biomedycznychMed Weter20177382710.21521/mw.5641Open DOISearch in Google Scholar

Satterthwaite AB, Burn TC, Le Beau MM, Tenen DG. Structure of the gene encoding CD34, a human hematopoietic stem cell antigen. Genomics. 1992;12:788–94; DOI:10.1016/0888-7543(92)90310-O.SatterthwaiteABBurnTCLe BeauMMTenenDGStructure of the gene encoding CD34, a human hematopoietic stem cell antigenGenomics1992127889410.1016/0888-7543(92)90310-OOpen DOISearch in Google Scholar

San Martin IA, Varela N, Gaete M, Villegas K, Osorio M, Tapia JC, et al. Impaired cell cycle regulation of the osteoblast-related heterodimeric transcription factor Runx2-Cbfβ in osteosarcoma cells. J Cell Physiol. 2009;221:560–71; DOI:10.1002/jcp.21894.SanMartin IAVarelaNGaeteMVillegasKOsorioMTapiaJCet alImpaired cell cycle regulation of the osteoblast-related heterodimeric transcription factor Runx2-Cbfβ in osteosarcoma cellsJ Cell Physiol20092215607110.1002/jcp.21894306643319739101Open DOISearch in Google Scholar

Mitkin NA, Muratova AM, Schwartz AM, Kuprash D V. The A allele of the single-nucleotide polymorphism rs630923 creates a binding site for MEF2C resulting in reduced cxcr5 promoter activity in B-cell lymphoblastic cell lines. Front Immunol. 2016;7:515; DOI:10.3389/fimmu.2016.00515.MitkinNAMuratovaAMSchwartzAMKuprashD VThe A allele of the single-nucleotide polymorphism rs630923 creates a binding site for MEF2C resulting in reduced cxcr5 promoter activity in B-cell lymphoblastic cell linesFront Immunol2016751510.3389/fimmu.2016.00515Open DOISearch in Google Scholar

Nowakowska BA, Obersztyn E, Szymańska K, Bekiesińska-Figatowska M, Xia Z, Ricks CB, et al. Severe mental retardation, seizures, and hypotonia due to deletions of MEF2C. Am J Med Genet Part B Neuropsychiatr Genet. 2010;153:1042–51; DOI:10.1002/ajmg.b.31071.NowakowskaBAObersztynESzymańskaKBekiesińska-FigatowskaMXiaZRicksCBet alSevere mental retardation, seizures, and hypotonia due to deletions of MEF2CAm J Med Genet Part B Neuropsychiatr Genet201015310425110.1002/ajmg.b.31071Open DOISearch in Google Scholar

TADA3 transcriptional adaptor 3 [Homo sapiens (human)] - Gene - NCBI n.d. https://www.ncbi.nlm.nih.gov/gene?cmd=Retrieve&dopt=full_report&list_uids=10474 (accessed March 2, 2020)TADA3 transcriptional adaptor 3 [Homo sapiens (human)] - Gene - NCBIn.dhttps://www.ncbi.nlm.nih.gov/gene?cmd=Retrieve&dopt=full_report&list_uids=10474accessed March 22020Search in Google Scholar

Zeng M, Kumar A, Meng G, Gao Q, Dimri G, Wazer D, et al. Human papilloma virus 16 E6 oncoprotein inhibits retinoic X receptor-mediated transactivation by targeting human ADA3 coactivator. J Biol Chem. 2002;277:45611–8; DOI:10.1074/jbc.M208447200.ZengMKumarAMengGGaoQDimriGWazerDet alHuman papilloma virus 16 E6 oncoprotein inhibits retinoic X receptor-mediated transactivation by targeting human ADA3 coactivatorJ Biol Chem200227745611810.1074/jbc.M208447200Open DOISearch in Google Scholar

Gevaert K, Goethals M, Martens L, Van Damme J, Staes A, Thomas GR, et al. Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides. Nat Biotechnol. 2003;21:566–9; DOI:10.1038/nbt810.GevaertKGoethalsMMartensLVanDamme JStaesAThomasGRet alExploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptidesNat Biotechnol200321566910.1038/nbt810Open DOISearch in Google Scholar

Nishi T, Forgac M. The vacuolar (H+)-ATPases - Nature’s most versatile proton pumps. Nat Rev Mol Cell Biol. 2002;3:94–103; DOI:10.1038/nrm729.NishiTForgacMThe vacuolar (H+)-ATPases - Nature’s most versatile proton pumpsNat Rev Mol Cell Biol200239410310.1038/nrm729Open DOISearch in Google Scholar

Kawasaki-Nishi S, Nishi T, Forgac M. Proton translocation driven by ATP hydrolysis in V-ATPases. FEBS Lett. 2003;545:76–85; DOI:10.1016/s0014-5793(03)00396-x.Kawasaki-NishiSNishiTForgacMProton translocation driven by ATP hydrolysis in V-ATPasesFEBS Lett2003545768510.1016/s0014-5793(03)00396-xOpen DOISearch in Google Scholar

Krupnik VE, Sharp JD, Jiang C, Robison K, Chickering TW, Amaravadi L, et al. Functional and structural diversity of the human Dickkopf gene family. Gene. 1999;238:301–13; DOI:10.1016/s0378-1119(99)00365-0.KrupnikVESharpJDJiangCRobisonKChickeringTWAmaravadiLet alFunctional and structural diversity of the human Dickkopf gene familyGene19992383011310.1016/s0378-1119(99)00365-0Open DOISearch in Google Scholar

Huang Y, Liu L, Liu A. Dickkopf-1: Current knowledge and related diseases. Life Sci. 2018;209:249–54; DOI:10.1016/j.lfs.2018.08.019.HuangYLiuLLiuADickkopf-1: Current knowledge and related diseasesLife Sci20182092495410.1016/j.lfs.2018.08.01930102902Open DOISearch in Google Scholar

Hamzehzadeh L, Caraglia M, Atkin SL, Sahebkar A. Dickkopf homolog 3 (DKK3): A candidate for detection and treatment of cancers? J Cell Physiol. 2018;233:4595–605; DOI:10.1002/jcp.26313.HamzehzadehLCaragliaMAtkinSLSahebkarADickkopf homolog 3 (DKK3): A candidate for detection and treatment of cancers?J Cell Physiol2018233459560510.1002/jcp.2631329206297Open DOISearch in Google Scholar

Cheng CW, Tse E. PIN1 in cell cycle control and cancer. Front Pharmacol. 2018;9DOI:10.3389/fphar.2018.01367.ChengCWTseEPIN1 in cell cycle control and cancerFront Pharmacol2018910.3389/fphar.2018.01367627523130534074Open DOISearch in Google Scholar

Cheng CW, Tse E. Targeting PIN1 as a Therapeutic Approach for Hepatocellular Carcinoma. Front Cell Dev Biol. 2020;7:369; DOI:10.3389/fcell.2019.00369.ChengCWTseETargeting PIN1 as a Therapeutic Approach for Hepatocellular CarcinomaFront Cell Dev Biol2020736910.3389/fcell.2019.00369697461732010690Open DOISearch in Google Scholar

Zhang L, Ip CK, Lee ICJ, Qi Y, Reed F, Karl T, et al. Diet-induced adaptive thermogenesis requires neuropeptide FF receptor-2 signalling. Nat Commun. 2018;9:4722; DOI:10.1038/s41467-018-06462-0.ZhangLIpCKLeeICJQiYReedFKarlTet alDiet-induced adaptive thermogenesis requires neuropeptide FF receptor-2 signallingNat Commun20189472210.1038/s41467-018-06462-0622643330413707Open DOISearch in Google Scholar

Lin YT, Chen JC. Neuropeptide ff modulates neuroendocrine and energy homeostasis through hypothalamic signaling. Chin J Physiol. 2019;62:47–52; DOI:10.4103/CJP.CJP_23_19.LinYTChenJCNeuropeptide ff modulates neuroendocrine and energy homeostasis through hypothalamic signalingChin J Physiol201962475210.4103/CJP.CJP_23_1931243174Open DOISearch in Google Scholar

Lin YT, Yu YL, Hong WC, Yeh TS, Chen TC, Chen JC. NPFFR2 activates the HPA axis and induces anxiogenic effects in rodents. Int J Mol Sci. 2017;18DOI:10.3390/ijms18081810.LinYTYuYLHongWCYehTSChenTCChenJCNPFFR2 activates the HPA axis and induces anxiogenic effects in rodentsInt J Mol Sci20171810.3390/ijms18081810557819728825666Open DOISearch in Google Scholar

Speransky S, Serafini P, Caroli J, Bicciato S, Lippman ME, Bishopric NH. A novel RNA aptamer identifies plasma membrane ATP synthase beta subunit as an early marker and therapeutic target in aggressive cancer. Breast Cancer Res Treat. 2019;176:271–89; DOI:10.1007/s10549-019-05174-3.SperanskySSerafiniPCaroliJBicciatoSLippmanMEBishopricNHA novel RNA aptamer identifies plasma membrane ATP synthase beta subunit as an early marker and therapeutic target in aggressive cancerBreast Cancer Res Treat20191762718910.1007/s10549-019-05174-3655578131006104Open DOISearch in Google Scholar

Ren L, Ding S, Song Y, Li B, Ramanathan M, Co J, et al. Profiling of rotavirus 3UTR-binding proteins reveals the ATP synthase subunit ATP5B as a host factor that supports late-stage virus replication. J Biol Chem. 2019;294:5993–6006; DOI:10.1074/jbc.RA118.006004.RenLDingSSongYLiBRamanathanMCoJet alProfiling of rotavirus 3UTR-binding proteins reveals the ATP synthase subunit ATP5B as a host factor that supports late-stage virus replicationJ Biol Chem20192945993600610.1074/jbc.RA118.006004646370430770472Open DOISearch in Google Scholar

Wang J, Hao F, Fei X, Chen Y. SPP1 functions as an enhancer of cell growth in hepatocellular carcinoma targeted by miR-181c. Am J Transl Res. 2019;11:6924;WangJHaoFFeiXChenYSPP1 functions as an enhancer of cell growth in hepatocellular carcinoma targeted by miR-181cAm J Transl Res2019116924Search in Google Scholar

Zeng B, Zhou M, Wu H, Xiong Z. SPP1 promotes ovarian cancer progression via integrin β1/FAK/AKT signaling pathway. Onco Targets Ther. 2018;11:1333–43; DOI:10.2147/OTT.S154215.ZengBZhouMWuHXiongZSPP1 promotes ovarian cancer progression via integrin β1/FAK/AKT signaling pathwayOnco Targets Ther20181113334310.2147/OTT.S154215585606329559792Open DOISearch in Google Scholar

Latoche JD, Ufelle AC, Fazzi F, Ganguly K, Leikauf GD, Fattman CL. Secreted phosphoprotein 1 and sex-specific differences in silica-induced pulmonary fibrosis in mice. Environ Health Perspect. 2016;124:1199–207; DOI:10.1289/ehp.1510335.LatocheJDUfelleACFazziFGangulyKLeikaufGDFattmanCLSecreted phosphoprotein 1 and sex-specific differences in silica-induced pulmonary fibrosis in miceEnviron Health Perspect2016124119920710.1289/ehp.1510335497705026955063Open DOISearch in Google Scholar

Sokol CL, Camire RB, Jones MC, Luster AD. The Chemokine Receptor CCR8 Promotes the Migration of Dendritic Cells into the Lymph Node Parenchyma to Initiate the Allergic Immune Response. Immunity. 2018;49:449-463.e6; DOI:10.1016/j.immuni.2018.07.012.SokolCLCamireRBJonesMCLusterADThe Chemokine Receptor CCR8 Promotes the Migration of Dendritic Cells into the Lymph Node Parenchyma to Initiate the Allergic Immune ResponseImmunity201849449463e610.1016/j.immuni.2018.07.012619202130170811Open DOISearch in Google Scholar

Asano K, Takahashi N, Ushiki M, Monya M, Aihara F, Kuboki E, et al. Intestinal CD169 + macrophages initiate mucosal inflammation by secreting CCL8 that recruits inflammatory monocytes. Nat Commun. 2015;6DOI:10.1038/ncomms8802.AsanoKTakahashiNUshikiMMonyaMAiharaFKubokiEet alIntestinal CD169 + macrophages initiate mucosal inflammation by secreting CCL8 that recruits inflammatory monocytesNat Commun2015610.1038/ncomms8802451832126193821Open DOISearch in Google Scholar

Ge B, Li J, Wei Z, Sun T, Song Y, Khan NU. Functional expression of CCL8 and its interaction with chemokine receptor CCR3. BMC Immunol. 2017;18:54; DOI:10.1186/s12865-017-0237-5.GeBLiJWeiZSunTSongYKhanNUFunctional expression of CCL8 and its interaction with chemokine receptor CCR3BMC Immunol2017185410.1186/s12865-017-0237-5574579329281969Open DOISearch in Google Scholar

De Filippo K, Dudeck A, Hasenberg M, Nye E, Van Rooijen N, Hartmann K, et al. Mast cell and macrophage chemokines CXCL1/CXCL2 control the early stage of neutrophil recruitment during tissue inflammation. Blood. 2013;121:4930–7; DOI:10.1182/blood-2013-02-486217.De FilippoKDudeckAHasenbergMNyeEVanRooijen NHartmannKet alMast cell and macrophage chemokines CXCL1/CXCL2 control the early stage of neutrophil recruitment during tissue inflammationBlood20131214930710.1182/blood-2013-02-48621723645836Open DOISearch in Google Scholar

Iwasa T, Afroz S, Inoue M, Arakaki R, Oshima M, Raju R, et al. IL-10 and CXCL2 in trigeminal ganglia in neuropathic pain. Neurosci Lett. 2019;703:132–8; DOI:10.1016/j.neulet.2019.03.031.IwasaTAfrozSInoueMArakakiROshimaMRajuRet alIL-10 and CXCL2 in trigeminal ganglia in neuropathic painNeurosci Lett2019703132810.1016/j.neulet.2019.03.03130904573Open DOISearch in Google Scholar

Palliser HK, Kelleher MA, Welsh TN, Zakar T, Hirst JJ. Mechanisms Leading to Increased Risk of Preterm Birth in Growth-Restricted Guinea Pig Pregnancies. Reprod Sci. 2014;21:269–76; DOI:10.1177/1933719113497268.PalliserHKKelleherMAWelshTNZakarTHirstJJMechanisms Leading to Increased Risk of Preterm Birth in Growth-Restricted Guinea Pig PregnanciesReprod Sci2014212697610.1177/193371911349726823885103Open DOISearch in Google Scholar

Wang X, Zhao Y, Wang Y, Wang Z, Guan X. Association between a functional variant at PTGS2 gene 3′UTR and its mRNA expression in lymphoblastoid cell lines. Cell Biol Int. 2013;37:516–9; DOI:10.1002/cbin.10066.WangXZhaoYWangYWangZGuanXAssociation between a functional variant at PTGS2 gene 3′UTR and its mRNA expression in lymphoblastoid cell linesCell Biol Int201337516910.1002/cbin.1006623444045Open DOISearch in Google Scholar

Kunzmann AT, Murray LJ, Cardwell CR, McShane CM, McMenamin ÚC, Cantwell MM. PTGS2 (Cyclooxygenase-2) expression and survival among colorectal cancer patients: A systematic review. Cancer Epidemiol Biomarkers Prev. 2013;22:1490–7; DOI:10.1158/1055-9965. EPI-13-0263.KunzmannATMurrayLJCardwellCRMcShaneCMMcMenaminÚCCantwellMMPTGS2 (Cyclooxygenase-2) expression and survival among colorectal cancer patients: A systematic reviewCancer Epidemiol Biomarkers Prev2013221490710.1158/1055-9965.EPI-13-026323810915Open DOISearch in Google Scholar

Ruan Z, Wang S, Yu W, Deng F. LncRNA MALAT1 aggravates inflammation response through regulating PTGS2 by targeting miR-26b in myocardial ischemia-reperfusion injury. Int J Cardiol. 2019;288:122; DOI:10.1016/j.ijcard.2019.04.015.RuanZWangSYuWDengFLncRNA MALAT1 aggravates inflammation response through regulating PTGS2 by targeting miR-26b in myocardial ischemia-reperfusion injuryInt J Cardiol201928812210.1016/j.ijcard.2019.04.01531101226Open DOISearch in Google Scholar

Madan M, Patel A, Skruber K, Geerts D, Altomare DA, Iv OP. ATP13A3 and caveolin-1 as potential biomarkers for difluoromethylornithine-based therapies in pancreatic cancers. Am J Cancer Res. 2016;6:1231–52;MadanMPatelASkruberKGeertsDAltomareDAIvOPATP13A3 and caveolin-1 as potential biomarkers for difluoromethylornithine-based therapies in pancreatic cancersAm J Cancer Res20166123152Search in Google Scholar

Wang J, Zhou F, Wang D, Li J, Lu D, Li Q, et al. Interaction of DCF1 with ATP1B1 induces impairment in astrocyte structural plasticity via the P38 signaling pathway. Exp Neurol. 2018;302:214–29; DOI:10.1016/j. expneurol.2018.01.007.WangJZhouFWangDLiJLuDLiQet alInteraction of DCF1 with ATP1B1 induces impairment in astrocyte structural plasticity via the P38 signaling pathwayExp Neurol20183022142910.1016/j.expneurol.2018.01.00729337145Open DOISearch in Google Scholar

Shi JL, Fu L, Ang Q, Wang GJ, Zhu J, Wang WD. Overexpression of ATP1B1 predicts an adverse prognosis in cytogenetically normal acute myeloid leukemia. Oncotarget. 2016;7:2585–95; DOI:10.18632/oncotarget.6226.ShiJLFuLAngQWangGJZhuJWangWDOverexpression of ATP1B1 predicts an adverse prognosis in cytogenetically normal acute myeloid leukemiaOncotarget2016725859510.18632/oncotarget.6226482305726506237Open DOISearch in Google Scholar

Zuo X, Xu W, Xu M, Tian R, Moussalli MJ, Mao F, et al. Metastasis regulation by PPARD expression in cancer cells. JCI Insight. 2017;2:e91419; DOI:10.1172/jci.insight.91419.ZuoXXuWXuMTianRMoussalliMJMaoFet alMetastasis regulation by PPARD expression in cancer cellsJCI Insight20172e9141910.1172/jci.insight.91419521493328097239Open DOISearch in Google Scholar

Ye HD, Li YR, Hong QX, Zhou AN, Zhao QL, Xu LM, et al. Positive association between PPARD rs2016520 polymorphism and coronary heart disease in a Han Chinese population. Genet Mol Res. 2015;14:6350–9; DOI:10.4238/2015.June.11.10.YeHDLiYRHongQXZhouANZhaoQLXuLMet alPositive association between PPARD rs2016520 polymorphism and coronary heart disease in a Han Chinese populationGenet Mol Res2015146350910.4238/2015.June.11.10Open DOISearch in Google Scholar

Charpidou A, Kotteas E, Gaga M. Towards precision medicine: CCL2, another brick in the wall? Eur Respir J. 2019;53DOI:10.1183/13993003.02327-2018.CharpidouAKotteasEGagaMTowards precision medicine: CCL2, another brick in the wall?Eur Respir J20195310.1183/13993003.02327-2018Open DOISearch in Google Scholar

Conti I, Rollins BJ. CCL2 (monocyte chemoattractant protein-1) and cancer. Semin Cancer Biol. 2004;14:149–54; DOI:10.1016/j. semcancer.2003.10.009.ContiIRollinsBJCCL2 (monocyte chemoattractant protein-1) and cancerSemin Cancer Biol2004141495410.1016/j.semcancer.2003.10.009Open DOISearch in Google Scholar

Brodie EJ, Infantino S, Low MSY, Tarlinton DM. Lyn, lupus, and (B) lymphocytes, a lesson on the critical balance of kinase signaling in immunity. Front Immunol. 2018;9:401; DOI:10.3389/fimmu.2018.00401.BrodieEJInfantinoSLowMSYTarlintonDMLyn, lupus, and (B) lymphocytes, a lesson on the critical balance of kinase signaling in immunityFront Immunol2018940110.3389/fimmu.2018.00401Open DOISearch in Google Scholar

Blasioli J, Goodnow CC. Lyn/CD22/SHP-1 and their importance in autoimmunity. Curr Dir Autoimmun. 2002;5:151–60; DOI:10.1159/000060551.BlasioliJGoodnowCCLyn/CD22/SHP-1 and their importance in autoimmunityCurr Dir Autoimmun200251516010.1159/000060551Open DOISearch in Google Scholar

Hibbs ML, Dunn AR. Lyn, a src-like tyrosine kinase. Int J Biochem Cell Biol. 1997;29:397–400; DOI:10.1016/s1357-2725(96)00104-5.HibbsMLDunnARLyn, a src-like tyrosine kinaseInt J Biochem Cell Biol19972939740010.1016/s1357-2725(96)00104-5Open DOISearch in Google Scholar

Rushlow C, Warrior R. The rel family of proteins. BioEssays. 1992;14:89– 95; DOI:10.1002/bies.950140204.RushlowCWarriorRThe rel family of proteinsBioEssays199214899510.1002/bies.950140204Open DOISearch in Google Scholar

Nolan GP, Baltimore D. The inhibitory ankyrin and activator Rel proteins. Curr Opin Genet Dev. 1992;2:211–20; DOI:10.1016/s0959-437x(05)80276-x.NolanGPBaltimoreDThe inhibitory ankyrin and activator Rel proteinsCurr Opin Genet Dev199222112010.1016/s0959-437x(05)80276-xOpen DOISearch in Google Scholar

Dyszkiewicz-Konwińska M, Nawrocki M, Huang Y, Bryja A, Celichowski P, Jankowski M, et al. New Gene Markers for Metabolic Processes and Homeostasis in Porcine Buccal Pouch Mucosa during Cells Long Term-Cultivation—A Primary Culture Approach. Int J Mol Sci. 2018;19:1027; DOI:10.3390/ijms19041027.Dyszkiewicz-KonwińskaMNawrockiMHuangYBryjaACelichowskiPJankowskiMet alNew Gene Markers for Metabolic Processes and Homeostasis in Porcine Buccal Pouch Mucosa during Cells Long Term-Cultivation—A Primary Culture ApproachInt J Mol Sci201819102710.3390/ijms19041027597946129596348Open DOISearch in Google Scholar

eISSN:
2544-3577
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Molecular Biology, Biochemistry