Open Access

Computational fluid dynamic (CFD) modeling of simultaneous extraction and fermentation process in a single sugar beet cossette


Cite

1. Schurgel K, Bellgardt KH. Bioreactor engineering: Modelling and control. 2000; Springer. Berlin Heidelberg10.1007/978-3-642-59735-0_2Search in Google Scholar

2. Cardona AC, Sanchez OJ. Fuel ethanol production: Process design trends and integration opportunities. Biores. Technol. 2007; 98: 2415 - 2457.Search in Google Scholar

3. Pimentel D, Patzek TW. Ethanol Production Using Corn, Switchgrass, and Wood; Biodiesel Production Using Soybean and Sunflower. Natural Resources Research. 2005; 14: 65-76.10.1007/s11053-005-4679-8Search in Google Scholar

4. Sanchez OJ, Cardona, CA. Trends in biotechnological production of fuel ethanol from different feedstocks. Biores Technol. 2008; 99: 5270-5295.10.1016/j.biortech.2007.11.013Search in Google Scholar

5. Novak M, Mathematical modeling and mass transfer research in development of sustainable bioprocesses for production of organic solvents and biofuels. 2015. PhD Thesis. Laboratory for Biochemical Engineering, Industrial Microbiology and Malting and Brewing Technology, Faculty of Food Technology and Biotechnology, University of Zagreb.Search in Google Scholar

6. Šantek, B, Ivancic M, Horvat P, Novak S, Maric V. (2006) Horizontal Tubular Bioreactors in Biotechnology. CABEQ. 2006; 20(4): 389-399Search in Google Scholar

7. Cabrera S, Arriola MC, Morales E, Micheo F, Rolz C. EX-FERM ethanol production using chipped sugarcane. App Microbiol and Biotechnol, 1982; 14(1): 21-28.10.1007/BF00507999Search in Google Scholar

8. Curien G, Ravanel S, Dumas R. A kinetic model of the branch?point between the methionine and threonine biosynthesis pathways in Arabidopsis thaliana, Eur. J. Biochem. 2003; 270: 4615-4627.Search in Google Scholar

9. Grosz R, Stephanopoulos G. Physiological, biochemical, and mathematical studies of micro-aerobic continuous ethanol fermentation by Saccharomyces cerevisiae. III: Mathematical model of cellular energetics and catabolism, Biotechnol. Bioeng. 1990a; 36:1030-1040.10.1002/bit.260361008Open DOISearch in Google Scholar

10. Rizzi M, Theobald U, Mailinger W, Baltes M, Reuss M. In Vivo Analysis of Metabolic Dynamics in Saccharomyces cerevisiae: I. Experimental Observations, Biotechnol. Bioeng. 1977; 55: 305-316.Search in Google Scholar

11. Rizzi M, Theobald U, Baltes M, Reuss M. In Vivo Analysis of Metabolic Dynamics in Saccharomyces cerevisiae: II. Mathematical Model, BiotechnoL Bioeng. 1997b; 55: 592- 608.10.1002/(SICI)1097-0290(19970820)55:4<592::AID-BIT2>3.0.CO;2-COpen DOISearch in Google Scholar

12. Novak M, Koller M, Braunegg G, Horvat P. Mathematical modelling as a tool for optimized PHA production. CABEQ special issue. 2015; 29(2): 183-220.Search in Google Scholar

13. Alvarez-Vasquez F, Gonzlez-Alcn C, Torres NV. Metabolism of citric acid production by Aspergillus niger: Model definition, steady-state analysis and constrained optimisation of citric acid production rate. Biotechnol. Bioeng. 2000; 70(1): 82-108.10.1002/1097-0290(20001005)70:1<82::AID-BIT10>3.0.CO;2-VSearch in Google Scholar

14. Generalis SC, Glover GMC. Modelling a Biochemical Reaction with Computational Fluid Dynamics, International Journal of Chemical Reactor Engineering. 2005; 3(1): ISSN (Online) 1542-6580.10.2202/1542-6580.1288Search in Google Scholar

15. Buttersack C, Schiliephake D. Extraction, In: Sugar Technology, (Poel, P.W., Schiweck, H., Schwartz, T., Ed.). Verlag Dr. Albert Bartens, KG-Berlin. 1998; 309-327.Search in Google Scholar

16. Hills EE, Abraham MH, Hersey A, Bevan CD. Diffusion coefficients in ethanol and in water at 298 K: Linear free energy relationships, Fluid Phase Equilibria. 2011; 303: 45-55.Search in Google Scholar

17. Mogi N, Sugai E, Fuse Y, Funazukuri T. Infinite dilution binary diffusion coefficient for six sugars at 0,1 MPa and temperatures from (273,2 to 353,2) K. J. Chem. Eng. Data. 2007; 52: 40-43.10.1021/je0601816Search in Google Scholar

18. Ribeiro ACF., Ortona O, Simoes SMN., Santos CIAV, Prazeres PMRA, Valente AJM, Lobo VMM, Burrows H. D. (2006) Binary Mutual Diffusion Coefficients of Aqueous Solutions of Sucrose, Lactose, Glucose, and Fructose in the Temperature Range from (298.15 to 328.15) K, J. Chem. Eng. Data. 2006; 51: 1836-1840.Search in Google Scholar

19. Levenspiel O. The monod equation: A revisit and a generalization to product inhibition situations, Biotechnol. Bioeng. 1980; 22: 1671-1687.10.1002/bit.260220810Open DOISearch in Google Scholar

20. Aiba S, Shoda M. Reassessment of the product inhibition in alcohol fermentation, J. Ferm. Technol. 1969; 47: 790-794.Search in Google Scholar

21. Andrews JF. A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates, Biotechnol Bioeng. 1968; 10: 707-723.Search in Google Scholar

22. Berkeley Madonna (2007) Berkeley Madonna modeling and analysis of dynamic systems v. 8.3.14, Berkeley, CA, USA http://www.berkeleymadonna.com.Search in Google Scholar

23. Novak M, Horvat P. Mathematical modelling and optimisation of a waste water treatment plant by combined oxygen electrode and biological waste water treatment model. Appl. Math. Model. 2012; 36:3813-3825.10.1016/j.apm.2011.11.028Open DOISearch in Google Scholar

24. OpenFOAM. OpenFoam user guide, 1.4.1 ed. 2007. http://www.opencfd.co.uk/openfoam/.Search in Google Scholar

25. Jasak H. Error Analysis and Estimation for the Finite Volume Method with Applications to Fluid Flow, PhD Thesis, Department of Mechanical Engineering, Imperial College of Science, Technology, and Medicine, London. 1996; 146-152.Search in Google Scholar

26. Issa RI. Solution of the Implicitly Discretized Fluid Flow Equations by Operator-Splitting. J. of Computational Physics. 1985; 62:40-65.10.1016/0021-9991(86)90099-9Search in Google Scholar

27. Issa RI, Gosman AD, Watkins AP. The Computation of Compressible and Incompressible Recirculating Flow by a Non-Iterative Implicit Scheme, J. of Computational Physics. 1986; 62:66-82.10.1016/0021-9991(86)90100-2Search in Google Scholar

28. Janardhanan VM, Deutschmann O. Computational Fluid Dynamics of Catalytic Reactors, in “Modeling of Heterogeneous Catalytic Reactions: From the molecular process to the technical system”, O. Deutschmann (Ed.), Wiley-VCH, Weinheim 2011.10.1002/9783527639878.ch8Search in Google Scholar

29. Koynov A, Khinast, JG. Effects of hydrodynamics and Lagrangian transport on chemically reacting bubble flows. Chem. Eng. Sci. 2004; 59: 3907-3927.Search in Google Scholar

eISSN:
2564-615X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, other, Medicine, Biomedical Engineering, Physics, Nanotechnology, Biophysics