Open Access

A note on strongly nonlinear parabolic variational inequalities


Cite

Introduction

Consider the parabolic initial-boundary value problem

{ut+A(u)+G(u)=finQT;u(0)=0inΩ;Dαu=0onΩ×]0,T[for|α|m1$$ \begin{equation*} \begin{cases} u_t+A(u)+G(u)=f & \quad \text{ in } Q_T;\\ u(0)=0 & \quad \text{ in } \Omega;\\ D^{\alpha}u=0 & \quad \text{ on } \partial \Omega \times ]0,T[ \text{ for } |\alpha|\leq m-1 \end{cases} \end{equation*} $$

on a cylinder QT = Ω × ]0, T[ over a bounded smooth domain Ω ⊂ ℝN, where

A(u)=|α|m(1)|α|DαAα(x,t;Du(x,t)),G(u)=g(x,t;u)$$ \begin{equation} A(u)=\sum_{|\alpha|\leq m}(-1)^{|\alpha|}D^{\alpha}A_{\alpha}(x,t;Du(x,t)),\quad G(u)=g(x,t;u) \end{equation} $$

and Du = (Dαu)α∣≤m. If the coefficients Aα satisfy at most polynomial growth conditions in u and its space derivatives while g obeys no growth in u, but merely a sign condition, Landes and Mustonen [6] proved that the usual truncation can be utilized to obtain weak solutions of (1) when m = 1. In [1], Brézis and Browder considered (1) but under stronger hypotheses on g. Roughly speaking, they required g to be controlled from above and below by the derivative of some convex function. In [5], Landes proved that this assumption is not necessary provided a certain a priori bound for the time derivative of solutions were needed. In [2], Browder and Breézis established an existence and uniqueness result for a general class of variational inequalities for (1) when g obeys no growth condition while A is a regular elliptic operator. Their proof is based on a type of compactness result. In this note, we extend the result of [5] to the corresponding class of variational inequalities under weaker assumptions.

Assumptions and the main result

We start by assuming the following hypotheses.

Aα(x, t, ξ) : Ω × ]0, T[ × ℝs → ℝ is continuous in t and ξ for almost all x and measurable in x for all t and ξ. Moreover, there exist a constant c1 and a function λ1Lp(QT) with p]1,[,p=pp1 $p\in ]1,\infty[, p'=\frac{p}{p-1}$ such that

|Aα(x,t,ξ)|c1|ξ|p1+λ1(x,t) for all (x,t)QT and ξs.$$ |A_{\alpha}(x,t,\xi)|\leq c_1|\xi|^{p-1}+\lambda_1(x,t) \text{ for all } (x,t)\in Q_T \text{ and } \xi\in R^s. $$

|α|≤m[Aα(x, t, ξ)−α(x, t, ξ)](ξαξ*α) ≥ 0 for all (x, t) ∈ QT and ξξ* in ℝs.

There exists a constant c2 > 0 and a function λ2L2(QT) such that ∑α∣≤mAα(x, t, ξ)ξαc1ξpλ2(x, t) for all (x, t) ∈ QT and ξ ∈ ℝs.

There is a function F(x, t, ξ) continuous in ξ, measurable in x and differentiable in t such that Fξα=Aα $\frac{\partial F}{\partial \xi_{\alpha}}=A_{\alpha}$ for all (x, t) ∈ QT and all α with ∣α∣ ≤ m.

g(x, t, r)Ω × ]0, T[ × ℝ → ℝ is continuous in t and r for almost all x and measurable in x for all t and ξ. Moreover,

|g(x,t,r)|λ4(x,t)ψ(r)$$ |g(x,t,r)|\leq \lambda_4 (x,t)\psi(r) $$

for some continuous function ψ: ℝ → ℝ and λ4L1(QT).

g(x, t, r)r ≥ −λ5(x, t) for some function λ5L1(QT).

There exists a function f˜L2(QT) $\tilde{f}\in L^2(Q_T)$ such that (f,v)=QTf˜(x,t)v(x,t)dxdt $(f,v)=\int_{Q_T}\tilde{f}(x,t)v(x,t)dx\, dt$ .

The function spaces we shall deal with will be obtained by the completion of the space of smooth functions with respect to the appropriate norm. We denote by

X=Lp(0,T;W0m,p(Ω))=C1(0,T,C0(Ω))¯p;m,p,  Lp(QT)=C0(Ω)¯p;p,$$ X=L^p(0,T;W_0^{m,p}(\Omega))=\mathcal{C}^1\overline{(0,T,\mathcal{C}_0^{\infty}(\Omega))}^{\|\ \|_{p;m,p}},\qquad L^p(Q_T)=\overline{\mathcal{C}_0^{\infty}(\Omega)}^{\|\ \|_{p;p}}, $$

where

up;m,pp=0Tum,ppdt=0T|α|mDαuppdtup;p=0TuPPdt  and  uPP=Ω|u|pdx.$$ \begin{align*} \|u\|^p_{p;m,p}&=\int_0^T\|u\|^p_{m,p}dt=\int_0^T\sum_{|\alpha|\leq m}\|D^{\alpha}u\|^p_p dt\\ \|u\|_{p;p}&=\int_0^T\|u\|^P_P\, dt \ \text{ and } \ \|u\|_P^P=\int_{\Omega}|u|^p dx. \end{align*} $$

Put W = XC (0, T;L2(Ω)). Finally, we choose a sequence (Φi)i=1C0(Ω) $(\Phi_i)_{i=1}^{\infty}\subset \mathcal{C}_0^{\infty}(\Omega)$ such that n=1Vn $\cup_{n=1}^{\infty}V_n$ with Vn = span(Φ1, Φ2, …, Φn) is dense in Wj, p(Ω):jp > mp + N.

Denote by Yn = C (0, T;Vn). Since the closure of n=1Yn $\cup_{n=1}^{\infty}Y_n$ with respect to the Cm−topology contains C0(QT) $\mathcal{C}_0^{\infty}(Q_T)$ , then for fL2(QT) there exists fkn=1Yn $f_k\in \cup_{n=1}^{\infty}Y_n$ such that fkf in L2(QT) [4]. For simplicity, we fix the constant c throughout this note. Now we are in a position to give our result.

Theorem

Let K be a closed convex subset of C (0, T;L2(Ω)) with 0 ∈ K. Let the hypothesesA1A4, G, andDbe satisfied. Then for a givenfW* there exists a weak solutionuWKwithu (0) = 0 such that

u˙,vu+A(u),vu+QTg(x,t,u)(vu)dxdtf,vufor allvC1(0,T;C0(Ω))K.$$ \begin{equation} \langle \dot{u},v-u\rangle+\langle A(u),v-u\rangle+\int_{Q_T}g(x,t,u)(v-u)\, dxdt\geq \langle f,v-u\rangle \text{for all} v\in C^1(0,T;\mathcal{C}_0^{\infty}(\Omega))\cap K. \end{equation} $$

Proof

We shall give the proof in several steps. In many stages we may adopt the ideas of [5 and 6]. Let gk be the truncation of g at level k ∈ ℕ:

gk(x,t;u)={kg(x,t;u)|g(x,t;u)|if|g(x,t;u)|>kg(x,t;u)otherwise$$ g_k(x,t;u)= \begin{cases} k\frac{g(x,t;u)}{|g(x,t;u)|} & \text{ if } |g(x,t;u)|\gt k\\ g(x,t;u) & \text{otherwise.} \end{cases}$$

Consider the truncated variational inequality

u˙,vu+A(u),vu+QTgk(x,t,u)(vu)dxdtf˜,vu  for allvWK.$$ \begin{equation} \langle \dot{u},v-u\rangle+\langle A(u),v-u\rangle+\int_{Q_T}g_k(x,t,u)(v-u)\, dxdt\geq \langle \tilde{f},v-u\rangle \text{for all} v\in W\cap K. \end{equation} $$

Firstly, we show the existence of a Galerkin solution uεYnK of (3) with

u˙n2;2+un2;2+unp;m,pc,$$ \begin{equation} \|\dot{u}_n\|_{2;2}+\|u_n\|_{2;2}+\|u_n\|_{p;m,p}\leq c, \end{equation} $$

where c is a constant not depending on ε, k, and n.

For this aim, let Aα, g(α, ε), and f˜˜ϵ $\tilde{\tilde{f}}_{\epsilon}$ be the Friedrich’s mollification in the variables (x, t) ∈ ℝN + 1 of Aα, gk, and f˜ $\tilde{f}$ , respectively. There exists a Galerkin solution uϵYnK for the mollified variational inequality

0τ(u˙ε,vuε)dt+0τAε(uε,vuε)dt+QTgk,ε(x,t,uε)(vuε)dxdtQTf˜ε(vuε)dxdt$$ \begin{equation} \int_0^{\tau}(\dot{u}_{\epsilon},v-u_{\epsilon})dt+\int_0^{\tau} A_{\epsilon}(u_{\epsilon},v-u_{\epsilon})dt+\int_{Q_T}g_{k,\epsilon}(x,t,u_{\epsilon})(v-u_{\epsilon})\, dxdt\geq \int_{Q_T} \tilde{f}_{\epsilon}(v-u_{\epsilon})\, dxdt \end{equation} $$

for all vYnK and all τ ∈ ]0, T[ with

uε(t)2c$$ \|u_{\epsilon}(t)\|_2\leq c $$

(see [3, 4]). Put v = 0 in (5). Then we get from A3 and G the estimate

uεp;pc.$$ \|u_{\epsilon}\|_{p;p}\leq c. $$

On the other hand, given h > 0, n ∈ ℕ, and any wεYnK, put v = uεhwε in (5). Then we get

0T(u˙ε,wε)dt+0T(Aε(uε),wε)dt+QTgk,ε(x,t,ueps)wεdxdtQTfεwεdxdt.$$ \int_0^T (\dot{u}_{\epsilon},w_{\epsilon})dt+\int_0^T (A_{\epsilon}(u_{\epsilon}),w_{\epsilon})dt+\int_{Q_T}g_{k,\epsilon}(x,t,u_{eps})w_{\epsilon}\, dxdt\leq \int_{Q_T}f_{\epsilon}w_{\epsilon}\, dxdt.$$

In particular,

0T(u˙ε(t),uε(t+h)uε(t)h)dt+0T(Aε(uε),uε(t+h)uε(t)h)dt+QTgk,ε(x,t,uε(t))(uε(t+h)uε(t)h)dxdt0T(f˜ε(t),uε(t+h)uε(t)h)dt.$$ \begin{align*} \int_0^T \left(\dot{u}_{\epsilon}(t),\frac{u_{\epsilon}(t+h)-u_{\epsilon}(t)}{h}\right)dt&+\int_0^T \left(A_{\epsilon}(u_{\epsilon}),\frac{u_{\epsilon}(t+h)-u_{\epsilon}(t)}{h}\right)dt\\ &+\int_{Q_T} g_{k,\epsilon}(x,t,u_{\epsilon}(t))\left(\frac{u_{\epsilon}(t+h)-u_{\epsilon}(t)}{h}\right) dxdt\\ &\leq \int_0^T (\tilde{f}_{\epsilon}(t),\frac{u_{\epsilon}(t+h)-u_{\epsilon}(t)}{h})dt. \end{align*} $$

Allowing h → 0, keeping ε fixed, we have

0T(u˙ε(t),u˙ε(t))dt+0T(Aε(uε),u˙ε(t))dt+QTgk,ε(x,t,uε)u˙ε(t)dxdt0T(f˜ε(t),u˙ε(t))dt.$$ \begin{align*} \int_0^T (\dot{u}_{\epsilon}(t),\dot{u}_{\epsilon}(t))dt&+\int_0^T (A_{\epsilon}(u_{\epsilon}),\dot{u}_{\epsilon}(t))dt+\int_{Q_T}g_{k,\epsilon}(x,t,u_{\epsilon})\dot{u}_{\epsilon}(t)dxdt\\ &\leq \int_0^T (\tilde{f}_{\epsilon}(t),\dot{u}_{\epsilon}(t))dt. \end{align*} $$

By A4 and G, we obtain

0Tu˙ε(t)22dt+0Tt[Fε(x,t;Duε(t))+Γk,ε(x,t;uε(t))]dxdtc0Tu˙ε(t)22dt.$$ \begin{align*} \int_0^T \|\dot{u}_{\epsilon}(t)\|_2^2\, dt&+\int_0^T \frac{\partial}{\partial t}[F_{\epsilon}(x,t; Du_{\epsilon}(t))+\Gamma_{k,\epsilon}(x,t; u_{\epsilon}(t))]\, dxdt\leq c\int_0^T \|\dot{u}_{\epsilon}(t)\|_2^2\, dt. \end{align*} $$

We may write this inequality in the form

0Tu˙ε(t)22dt+320TtΩ[Fε(x,t;Du(t))+Γk,ε(x,t;uε(t))]dxdt120TtΩ[Fε(x,t;Duε(t))+Γk,ε(x,t;uε(t))]dxdt+c0Tu˙ε(t)22dt.$$ \begin{align*} \int_0^T \|\dot{u}_{\epsilon}(t)\|_2^2\, dt&+\frac 32\int_0^T \frac{\partial}{\partial t}\int_{\Omega}[F_{\epsilon}(x,t;Du_{\epsilon}(t))+\Gamma_{k,\epsilon}(x,t;u_{\epsilon}(t))]\, dxdt\\ &\leq \frac 12\int_0^T \frac{\partial}{\partial t}\int_{\Omega} [F_{\epsilon}(x,t;Du_{\epsilon}(t))+\Gamma_{k,\epsilon}(x,t;u_{\epsilon}(t))]\, dxdt+c\int_0^T\|\dot{u}_{\epsilon}(t)\|_2^2\, dt. \end{align*} $$

From the mean value theorem for definite integrals, we get

0Tu˙ϵ(t)22dt+cTΩ[tFϵ(x,t;Duϵ(t))+tΓk,ϵ(x,t;uϵ(t))]dxc+c0TΩ[tFϵ(x,t;Duϵ(t))+tΓk,ϵ(x,t;uϵ(t))]dxdt,0<t<T,$$ \begin{align*} \int_0^T \|\dot{u}_{\epsilon}(t)\|_2^2\, dt&+cT\int_{\Omega}\left[\frac{\partial}{\partial t}F_{\epsilon}(x,t;Du_{\epsilon}(t))+\frac{\partial}{\partial t}\Gamma_{k,\epsilon}(x,t;u_{\epsilon}(t))\right]\, dx\\ &\leq c+c\int_0^T \int_{\Omega}\left[\frac{\partial}{\partial t}F_{\epsilon}(x,t; Du_{\epsilon}(t))+\frac{\partial}{\partial t}\Gamma_{k,\epsilon}(x,t;u_{\epsilon}(t))\right]\, dxdt, \quad 0\lt t\lt T, \end{align*} $$

where

Γk,ε(x,t;ρ)=0ρgk,ε(x,t;r)dr.$$ \Gamma_{k,\epsilon}(x,t;\rho)=\int_0^{\rho}g_{k,\epsilon}(x,t;r)dr. $$

We may invoke Gronwall’s lemma to get the estimate

Ω[tFε(x,t;Duε(t))+tΓk,ε(x,t;uε(t))]dxc.$$ \int_{\Omega}\left[\frac{\partial}{\partial t}F_{\epsilon}(x,t; Du_{\epsilon}(t))+\frac{\partial}{\partial t}\Gamma_{k,\epsilon}(x,t;u_{\epsilon}(t))\right]\, dx\leq c.$$

Therefore,

u˙εL2(Q)c.$$ \|\dot{u}_{\epsilon}\|_{L^2(Q)}\leq c.$$

and consequently,

u˙ε2;2+uε2;2+uεp;m,pc,$$ \begin{equation} \|\dot{u}_{\epsilon}\|_{2;2}+\|u_{\epsilon}\|_{2;2}+\|u_{\epsilon}\|_{p;m,p}\leq c, \end{equation} $$

where the constant c is independent of ε, k, and n.

From (6) and in view of Arzelà-Ascoli’s theorem, we get

uεun strongly in Yn and u˙εu˙n(weakly) in L2(QT).$$ u_{\epsilon}\to u_n \text{strongly in} Y_n \text{and} \dot{u}_{\epsilon}\to\dot{u}_n \text{(weakly) in} L^2(Q_T).$$

Therefore, (5) yields

0T(u˙n,vun)dt+0T(A(un),vun)dt+QTgk(x,t,un)(vun)dxdtQTf˜(vun)dxdt,$$ \begin{equation} \int_0^T (\dot{u}_n,v-u_n)dt+\int_0^T(A(u_n),v-u_n)dt+\int_{Q_T}g_k(x,t,u_n)(v-u_n)dxdt\geq \int_{Q_T}\tilde{f}(v-u_n)\, dxdt, \end{equation} $$

where vYnK and un(0) = 0. By the lower-semicontinuity property of the norms in (6), we get (4).

From (4) and the fixes level of truncation, we get

{u˙nu˙k (weakly) in L2(QT)unuk strongly in Lp(0,T;W0m1,p(Ω)) and weakly in C(0,T,L2(Ω))Aα(x,t;Dun)hα(x,t) (weakly) in Lp(QT),|α|mgk(x,t;un)gk(x,t;uk) strongly in Lp(QT).$$ \begin{equation} \begin{cases} \dot{u}_n\rightharpoonup \dot{u}_k \text{ (weakly) in } L^2(Q_T)\\ u_n\to u_k \text{ strongly in } L^p(0,T;W_0^{m-1,p}(\Omega)) \text{ and weakly in } C(0,T,L^2(\Omega))\\ A_{\alpha}(x,t;Du_n)\rightharpoonup h_{\alpha}(x,t) \text{ (weakly) in } L^{p'}(Q_T), |\alpha|\leq m\\ g_k(x,t;u_n)\to g_k(x,t;u_k) \text{ strongly in } L^{p'}(Q_T). \end{cases} \end{equation} $$

Secondly, we show that uk is a weak solution of (3). For this purpose and in view of (6), it suffices to prove that

limsupn0T(A(un),unuk)dt0.$$ \begin{equation} \limsup_n \int_0^T (A(u_n),u_n-u_k)dt\leq 0. \end{equation} $$

This inequality holds true at least for one subsequence (vk)n=1Yn $(v_k)\subset \cup_{n=1}^{\infty}Y_n$ . From (7), for any fixed k, we have

0T(u˙n,vkun)dt+0T(A(un),vkun)dt+QTgk(x,t,un)(vkun)dxdtQTf˜(vkun)dxdt.$$ \begin{equation} \int_0^T (\dot{u}_n,v_k-u_n)dt+\int_0^T(A(u_n),v_k-u_n)dt+\int_{Q_T}g_k(x,t,u_n)(v_k-u_n)\, dxdt\geq \int_{Q_T}\tilde{f}(v_k-u_n)\, dxdt. \end{equation} $$

Let vk be the truncation at level k and the mollification with respect to the time and space variables, respectively, of the Galerkin’s solution un, i.e., vk=((unk)μ)σ $v_k=((u_n^k)_{\mu})_{\sigma}$ . Letting n → ∞ in (10), taking (8) into account, and the strong convergence of ((unk)μ)σ $((u_n^k)_{\mu})_{\sigma}$ into uk in X with respect to σ, μ, [6], we obtain (9) and hence, ukWK is a weak solution of (3), i.e.,

0T(u˙k,vuk)dt+0T(A(uk),vuk)dt+QTgk(x,t,uk)(vuk)dxdtQTf˜(vuk)dxdt$$ \begin{equation} \int_0^T (\dot{u}_k,v-u_k)dt+\int_0^T (A(u_k),v-u_k)dt+\int_{Q_T}g_k(x,t,u_k)(v-u_k)\, dxdt\geq \int_{Q_T}\tilde{f}(v-u_k)\, dxdt \end{equation} $$

for all vWK. Finally, to show (2), it remains to prove the following assertions:

u˙ku˙(weakly) inL2(QT),$$ \begin{equation} \dot{u}_k\rightharpoonup \dot{u} \text{(weakly) in} L^2(Q_T), \end{equation} $$uku(strongly) inLp(0,T;W0m1,p(Ω)),$$ \begin{equation} u_k\to u \,\,\text{(strongly) in} L^p(0,T;W_0^{m-1,p}(\Omega)), \end{equation} $$and (weakly) in C(0,T;L2(Ω)),$$ \begin{equation} \text{and (weakly) in } C(0,T;L^2(\Omega)), \end{equation} $$gk(x,t;uk)g(x,t;u)(strongly) in L1(QT),$$ \begin{equation} g_k(x,t;u_k)\to g(x,t;u) \text{(strongly) in } L^1(Q_T), \end{equation} $$

and

Dαuk(x,t)Dαu(x,t)a.e. in QT for all |α|m.$$ \begin{equation} D^{\alpha}u_k(x,t)\to D^{\alpha}u(x,t) \text{a.e. in } Q_T \text{for all} |\alpha|\leq m. \end{equation} $$

Assertions (12-15) follow similarly as above and as in [5]. To show 16, it suffices to show

limsupk0T(A(un),uku)dt0.$$ \begin{equation} \limsup_k \int_0^T (A(u_n),u_k-u)dt\leq 0. \end{equation} $$

Since for any vX we may find a sequence (v) converging weakly to u, we get from (11)

0T(u˙k,uk)dt+0T(A(uk),ukv)dt+QTgk(x,t;uk)ukdxdtQTgk(x,t;uk)vdxdt+0T(u˙k,v)dt0T(f,vuk)dt.$$ \begin{align*} \int_0^T (\dot{u}_k,u_k)dt&+\int_0^T (A(u_k),u_k-v_{\ell})dt+\int_{Q_T} g_k(x,t;u_k)u_k\, dxdt\\ &\leq \int_{Q_T} g_k(x,t;u_k)v_{\ell}\, dxdt+\int_0^T (\dot{u}_k,v_{\ell})dt-\int_0^T (f,v_{\ell}-u_k)dt. \end{align*} $$

Letting k → ∞, keeping fixed, taking into account Fatou’s lemma, and then allowing → ∞, we obtain (17) and consequently, (2) follows.

eISSN:
2444-8656
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics