Cite

1. Wang D, Lippard SJ. Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov. 2005; 4:307–20.10.1038/nrd1691Search in Google Scholar

2. Rabik CA, Dolan ME. Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat Rev. 2007; 9-23.10.1016/j.ctrv.2006.09.006Open DOISearch in Google Scholar

3. Giaccone G. Clinical perspectives on platinum resistance. Drugs. 2000; 59: 9-38.10.2165/00003495-200059004-00002Open DOISearch in Google Scholar

4. Kartalou M, Essigmann JM. Mechanisms of resistance to cisplatin. Mutat Res 2001; 478(1-2):23-43.10.1016/S0027-5107(01)00141-5Search in Google Scholar

5. Miller PR, Tadagavadi RK, Ramesh G, Reeves WB. Mechanisms of Cisplatin Nephrotoxicty. Toxins. 2010; 2490-518.10.3390/toxins2112490315317422069563Search in Google Scholar

6. Mc Whinney SR, Goldberg RM, Mc Leod HL. Platinum neurotoxicity pharmacogenetics. Mol Cancer Ther 2009; 10-16.10.1158/1535-7163.MCT-08-0840265182919139108Search in Google Scholar

7. Ding D, Allman BL, Salvi R. Review: Ototoxic Characteristics of Platinum Antitumor Drugs. Anat Rec (Hoboken) 2012; 1851–67.10.1002/ar.2257723044998Search in Google Scholar

8. Herrmann J, Yang EH, Iliescu CA et al. Vascular Toxicities of Cancer Therapies: The Old and the New-An Evolving Avenue. Circulation. 2016; 133:1272-89.10.1161/CIRCULATIONAHA.115.018347481736327022039Search in Google Scholar

9. Yeh ETH, Tong AT, Lenihan DJ et al. Cardiovascular complications of cancer therapy: Diagnosis, pathogenesis, and management. Circulation. 2004; 109:3122–31.10.1161/01.CIR.0000133187.74800.B915226229Search in Google Scholar

10. Pai VB, Nahata MC. Cardiotoxicity of chemotherapeutic agents: incidence, treatment and prevention. Drug Saf. 2000; 22:263-302.10.2165/00002018-200022040-0000210789823Search in Google Scholar

11. Chirino YI, Pedraza-Chaverri J. Role of oxidative and nitrosative stress in cisplatin-induced nephrotoxicity. Exp Toxicol Pathol. 2009; 61(3):223-42.10.1016/j.etp.2008.09.003Open DOISearch in Google Scholar

12. Ma H, Jones KR, Guo R, Xu P, Shan Y, Ran J. Cisplatin compromises myocardial contractile function and mitochondrial ultrastructure: role of endoplasmic reticulum stress. Clin. Exp. Pharmacol. Physiol. 2010; 460-5.10.1111/j.1440-1681.2009.05323.xOpen DOISearch in Google Scholar

13. Kawai Y, Nakao T, Kunimura N, Kohda Y, Gemba M. Relationship of intracellular calcium and oxygen radicals to Cisplatin-related renal cell injury. J Pharmacol Sci. 2006; 100(1):65-72.10.1254/jphs.FP0050661Search in Google Scholar

14. Yao X, Panichpisal K, Kurtzman N, Nugent K. Cisplatin nephrotoxicity: a review. Am J Med Sci. 2007; 334(2):115-24.10.1097/MAJ.0b013e31812dfe1eSearch in Google Scholar

15. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979; 351-8.10.1016/0003-2697(79)90738-3Search in Google Scholar

16. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite and [15N] nitrate in biological fluids. Anal Biochem 1982; 131-8.10.1016/0003-2697(82)90118-XSearch in Google Scholar

17. Auclair C, Voisin E. Nitroblue tetrazolium reduction. In: Greenvvald Ra Hadnbook of methods for oxygen radical research. CRC Press Une, Boca Raton, 1985; 123-32.Search in Google Scholar

18. Pick E, Keisari Y. A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture. J immunol Methods 1980; 161-70.10.1016/0022-1759(80)90340-3Open DOISearch in Google Scholar

19. Yilmaz HR, Iraz M, Sogut S, et al. The effects of erdosteine on the activities of some metabolic enzymes during cisplatin-induced nephrotoxicity in rats. Pharmacol Res. 2004; 50(3):287-90.10.1016/j.phrs.2004.03.00315225672Open DOISearch in Google Scholar

20. Davis CA, Nick HS, Agarwal A. Manganese superoxide dismutase attenuates Cisplatin-induced renal injury: importance of superoxide. J Am Soc Nephrol. 2001; 12(12):2683-90.10.1681/ASN.V1212268311729237Search in Google Scholar

21. Kadikoylu G, Bolaman Z, Demir S, Balkaya M, Akalin N, Enli Y. The effects of desferrioxamine on cisplatininduced lipid peroxidation and the activities of antioxidant enzymes in rat kidneys. Hum Exp Toxicol. 2004; 23(1):29-34.10.1191/0960327104ht413oa15027813Open DOISearch in Google Scholar

22. Chirino YI, Hernández-Pando R, Pedraza-Chaverrí J. Peroxynitrite decomposition catalyst ameliorates renal damage and protein nitration in cisplatin-induced nephrotoxicity in rats. BMC Pharmacol. 2004; 4:20-9.10.1186/1471-2210-4-20Search in Google Scholar

23. Yildirim Z, Sogut S, Odaci E, et al. Oral erdosteine administration attenuates cisplatin-induced renal tubular damage in rats. Pharmacol Res. 2003; 47(2):149-56.10.1016/S1043-6618(02)00282-7Open DOISearch in Google Scholar

24. El-Awady el-SE, Moustafa YM, Abo-Elmatty DM, Radwan A. Cisplatin-induced cardiotoxicity: Mechanisms and cardioprotective strategies. Eur J Pharmacol. 2011; 650:335-41.10.1016/j.ejphar.2010.09.08521034734Search in Google Scholar

25. El-Sawalhi MM, Ahmed LA. Exploring the protective role of apocynin, a specific NADPH oxidase inhibitor, in cisplatin-induced cardiotoxicity in rats. Chem Biol Interact. 2014; 207:58-66.10.1016/j.cbi.2013.11.00824291008Search in Google Scholar

26. Chowdhury S, Sinha K, Banerjee S, Sil PC. Taurine protects cisplatin induced cardiotoxicity by modulating inflammatory and endoplasmic reticulum stress responses. Biofactors. 2016; 42(6):647-64.10.1002/biof.130127297806Open DOISearch in Google Scholar

27. Rosic G, Selakovic D, Joksimovic J, et al. The effects of Nacetylcysteine on cisplatin-induced changes of cardiodynamic parameters within coronary autoregulation range in isolated rat hearts. Toxicol Lett. 2016; 242:34-46.10.1016/j.toxlet.2015.11.02826656795Search in Google Scholar

28. Francescato HD, Costa RS, Scavone C, Coimbra TM Parthenolide reduces cisplatin-induced renal damage. Toxicology. 2007; 230:64–75.10.1016/j.tox.2006.10.02517156909Search in Google Scholar

29. Wang R P, Yao Q, Xiao Y B, et al. Toll-like receptor 4/nuclear factor-kappa B pathway is involved in myocardial injury in a rat chronic stress model. Stress. 2011; 14:567–75.10.3109/10253890.2011.57172921675862Open DOISearch in Google Scholar

30. Hussein A, Ahmed AA, Shouman SA, Sharawy S. Ameliorating effect of DL-α-lipoic acid against cisplatin-induced nephrotoxicity and cardiotoxicity in experimental animals. Drug Discov Ther. 2012; 6(3):147-56.10.5582/ddt.2012.v6.3.147Search in Google Scholar

31. Badary OA, Abdel-Maksoud S, Ahmed WA, Owieda GH. Naringenin attenuates cisplatin nephrotoxicity in rats. Life Sci. 2005; 76(18):2125-35.10.1016/j.lfs.2004.11.00515826879Open DOISearch in Google Scholar

32. Olson RD, Boerth RC, Gerber JG, Nies AS. Mechanism of adriamycin cardiotoxicity: evidence for oxidative stress. Life Sci. 1981; 29(14):1393-401.10.1016/0024-3205(81)90001-1Open DOISearch in Google Scholar

33. Hanigan MH, Devarajan P. Cisplatin nephrotoxicity: molecular mechanisms. Cancer Ther. 2003; 1:47-61.Search in Google Scholar

34. Kim HJ, Lee JH, Kim SJ, et al. Roles of NADPH oxidases in cisplatin-induced reactive oxygen species generation and ototoxicity. J Neurosci. 2010; 30(11):3933-46.10.1523/JNEUROSCI.6054-09.2010663227820237264Open DOISearch in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, other