Cite

1. Záborszky L, Alheid GF, Beinfeld MC, Eiden LE, Heimer L, Palkovits M. Cholecystokinin innervation of the ventral striatum: a morphological and radioimmunological study. Neuroscience 1985;14:427-53;10.1016/0306-4522(85)90302-1Search in Google Scholar

2. Zahm DS, Brog JS. On the significance of subterritories in the “accumbens” part of the rat ventral striatum. Neuroscience 1992;50:751-67;10.1016/0306-4522(92)90202-DSearch in Google Scholar

3. Sazdanovic M, Sazdanovic P, Zivanovic-Macuzic I, Jakovljevic V, Jeremic D, Peljto A, Tosevski J. Neurons of human nucleus accumbens. Vojnosanit Pregl 2011;68:655-60;10.2298/VSP1108655SSearch in Google Scholar

4. Cassella SN, Hemmerle AM, Lundgren KH, Kyser TL, Ahlbrand R, Bronson SL, Richtand NM, Seroogy KB. Maternal immune activation alters glutamic acid decarboxylase-67 expression in the brains of adult rat offspring. Schizophr Res 2016;171:195-9;10.1016/j.schres.2016.01.041Search in Google Scholar

5. Kanjhan R, Noakes PG, Bellingham MC. Emerging Roles of Filopodia and Dendritic Spines in Motoneuron Plasticity during Development and Disease. Neural Plast 2016;2016:3423267;10.1155/2016/3423267Search in Google Scholar

6. Kalivas PW, Duffy PJ. D1 receptors modulate glutamate transmission in the ventral tegmental area. J Neurosci 1995;15:5379-5388; http://www.jneurosci.org/content/15/7/5379.long10.1523/JNEUROSCI.15-07-05379.1995Search in Google Scholar

7. Reynolds SM, Berridge KC. Positive and negative motivation in nucleus accumbens shell: bivalent rostrocaudal gradients for GABA-elicited eating, taste “liking”/”disliking” reactions, place preference/avoidance, and fear. J Neurosci 2002;22:7308-20; http://www.jneurosci.org/content/22/16/7308.full.pdf+html10.1523/JNEUROSCI.22-16-07308.2002Search in Google Scholar

8. Sesack SR, Grace AA. Cortico-Basal Ganglia reward network: microcircuitry. Neuropsychopharmacology 2010;35:27-47;10.1038/npp.2009.93Search in Google Scholar

9. D’Souza MS. Glutamatergic transmission in drug reward: implications for drug addiction. Front Neurosci 2015;9:404;doi:10.3389/fnins.2015.00404Search in Google Scholar

10. Mavridis I. The role of the nucleus accumbens in psychiatric disorders Psychiatriki 2015;25:282-94;Search in Google Scholar

11. Meredith GE, Pennartz CM, Groenewegen HJ. The cellular framework for chemical signalling in the nucleus accumbens. Prog Brain Res 1993;99:3-24;10.1016/S0079-6123(08)61335-7Search in Google Scholar

12. Langendorf CG, Tuck KL, Key T., Trevor LG. Key, Gustavo Fenalti,Pike RN., Rosado CJ., Anders SM. Wong, Ashley MB., Ruby HP. Law, andWhisstock JC. Structural characterization of the mechanism through which human glutamic acid decarboxylase auto-activates. #Biosci Rep 2013;33:137-44;10.1042/BSR20120111Search in Google Scholar

13. Kalkman HO, Loetscher E. GAD(67): the link between the GABA-deficit hypothesis and the dopaminergic and glutamatergic theories of psychosis. J Neural Transm 2003;110:803-12;10.1007/s00702-003-0826-8Search in Google Scholar

14. Kalkman HO, Loetscher E, Akbarian S. Molecular and cellular mechanisms of altered GAD1/GAD67 expression in schizophrenia and related disorders. Brain Res Rev 2006;52:293-304;10.1016/j.brainresrev.2006.04.001Search in Google Scholar

15. Zhang X, Tong HL, Xiong X, Qiang C, Davidson C, Wetsel WC , Ellinwood EH. Methamphetamine induces long-term changes in GABAA receptor a2 subunit and GAD67 expression. Biochem Biophys Res Commun 2006;351:300-5;10.1016/j.bbrc.2006.10.046Search in Google Scholar

16. Akbarian S, Huang HS. Molecular and cellular mechanisms of altered GAD1/GAD67 expression in schizophrenia and related disorders. Brain Res Rev 2006;293:30-4;10.1016/j.brainresrev.2006.04.001Search in Google Scholar

17. Dickerson DD, Overeem KA, Wolf AR , Williams JM, Abraham WC, Bilkey DK. Association of aberrant neural synchrony and altered GAD67 expression following exposure to maternal immune activation, a risk factor for schizophrenia. Transl Psychiatry 2014;4:418;10.1038/tp.2014.64Search in Google Scholar

18. Denta G, Choic DC, Hermanc JP, Seymour L . GABAergic circuits and the stress hyporesponsive period in the rat: Ontogeny of glutamic acid decarboxylase (GAD) 67 mRNA expression in limbic-hypothalamic stress pathways. Brain Res 2007;1138:1-9;10.1016/j.brainres.2006.04.082Search in Google Scholar

19. Awapara J, Landua AJ, Fuerst R. Distribution of free amino acids and related substances in organs of the rat. Biochem Biophys Acta 1950;5:457-62;10.1016/0006-3002(50)90191-0Search in Google Scholar

20. Erlander MG, Tobin AJ. The structural and functional heterogeneity of glutamic acid decarboxylase: a review. Neurochem Res 1991;16:215-26;10.1007/BF009660841780024Search in Google Scholar

21. Kaufman DL, Houser CR, Tobin AJ. Two forms of the gamma-aminobutyric acid synthetic enzyme glutamate decarboxylase have distinct intraneuronal distributions and cofactor interactions. J Neurochem 1991;56:720-3;10.1111/j.1471-4159.1991.tb08211.x81940301988566Search in Google Scholar

22. Martin DL, Rimvall K. Regulation of gamma-aminobutyric acid synthesis in the brain. J Neurochem 1993;60:395-407;10.1111/j.1471-4159.1993.tb03165.xSearch in Google Scholar

23. Meredith GE, Ypma P, Zahm DS. Effects of Dopamine Depletion on the Morphology of Medium Spiny Neurons in the Shell and Core of the Rat Nucleus Accumbens. J Neurosci 1995;15:3808-20;10.1523/JNEUROSCI.15-05-03808.1995Search in Google Scholar

24. Gangarossa G, Espallergues J, de Kerchove d’Exaerde A, Mestikawy SE, Gerfen CR, Hervé D, Girault JA, Valjent E. Distribution and compartmental organization of GABAergic medium-sized spiny neurons in the mouse nucleus accumbens. Front Neural Circuits 2013;19:7-22;10.3389/fncir.2013.00022Search in Google Scholar

25. Lobo MK, Nestler EJ. The Striatal Balancing Act in Drug Addiction: Distinct Roles of Direct and Indirect Pathway Medium Spiny Neurons. Front Neuroanat 2011;5:41;10.3389/fnana.2011.00041Search in Google Scholar

26. Bolam JP, Powel JF, Wu JY, Smith AD. Glutamate decarboxylase- immunoreactive structures in the rat neostriatum: a correlated light and electron microscopic study including a combination of Golgi impregnation with immunocytochemistry. J Comp Neurol 1985;237:1-20;10.1002/cne.902370102Search in Google Scholar

27. Onteniente B, Tago H, Kimura H, Maeda T. Distribution of gamma-aminobutyric acid-immunoreactive neurons in the septal region of the rat brain. J Comp Neurol 1986;248:422-30;10.1002/cne.902480310Search in Google Scholar

28. Köhler C, Chan-Palay V. Distribution of gamma aminobutyric acid containing neurons and terminals in the septal area. An immunohistochemical study using antibodies to glutamic acid decarboxylase in the rat brain. Anat Embryol (Berl) 1983;167:53-65;10.1007/BF00304600Search in Google Scholar

29. Panula P, Revuelta AV, Cheney DL, Wu JY, Costa E. An immunohistochemical study on the location of GABAergic neurons in rat septum. J Comp Neurol 1984;222:69-80;10.1002/cne.902220107Search in Google Scholar

30. Kita H, Kitai ST. Glutamate decarboxylase immunoreactive neurons in rat neostriatum: their morphological types and populations. Brain Res 1988;447:346-52;10.1016/0006-8993(88)91138-9Search in Google Scholar

31. Trifonov S, Houtani T, Kase M, Toida K, Maruyama M, Yamashita Y, Shimizu JI, Sugimoto T. Lateral regions of the rodent striatum reveal elevated glutamate decarboxylase 1 mRNA expression in medium-sized projection neurons. Eur J Neurosci 2012;35:711-22;10.1111/j.1460-9568.2012.08001.x22332935Search in Google Scholar

32. Cuzon Carlson VC, Mathur BN, Davis MI, Lovinger DM. Subsets of Spiny Striosomal Striatal Neurons Revealed in the Gad1-GFP BAC Transgenic Mouse. Basal Ganglia 2011;1:201-11; 10.1016/j.baga.2011.11.002322589822140656Search in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, other