Cite

1. Tian Z, van Velkinburgh JC, Wu Y, Ni B. Innate lymphoid cells involve in tumourigenesis. Int J Cancer. 2015; doi: 10.1002/ijc.29443.10.1002/ijc.2944325604320Search in Google Scholar

2. Fuchs A, Colonna M. Innate lymphoid cells in homeostasis, infection, chronic inflammation and tumours of the gastrointestinal tract. Curr Opin Gastroenterol 2013; 29: 581-7.10.1097/MOG.0b013e328365d33924100718Search in Google Scholar

3. Constantinides MG, McDonald BD, Verhoef PA, Bendelac A. A committed precursor to innate lymphoid cells. Nature 2014; 508: 397-401.10.1038/nature13047400350724509713Search in Google Scholar

4. Spits H, Artis D, Colonna M et al. Innate lymphoid cells- a proposal for uniform nomenclature. Nat Rev Immunol 2013; 13: 145-9.10.1038/nri336523348417Search in Google Scholar

5. Montaldo E, Vacca P, Moretta L, Mingari MC. Development of human natural killer cells and other innate lymphoid cells. Semin Immunol 2014; 26: 107-13.10.1016/j.smim.2014.01.00624559836Search in Google Scholar

6. Yagi R, Zhong C, Northrup DL et al. The transcription factor GATA3 is critical for the development of all IL-7Ralpha-expressing innate lymphoid cells. Immunity 2014; 40: 378-88.10.1016/j.immuni.2014.01.012402679724631153Search in Google Scholar

7. Spits H, Di Santo JP. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodelling. Nat Immunol 2011; 12: 21-7.10.1038/ni.196221113163Search in Google Scholar

8. Jovanovic I, Pejnovic N, Radosavljevic G et al. Interleukin-33/ST2 axis promotes breast cancer growth and metastases by facilitating intratumoural accumulation of immunosuppressive and innate lymphoid cells. Int J Cancer 2013; 134: 1669-82.10.1002/ijc.2848124105680Search in Google Scholar

9. Liu J, Duan Y, Cheng X et al. IL-17 is associated with poor prognosis and promotes angiogenesis via stimulating VEGF production of cancer cells in colorectal carcinoma. Biochem Biophys Res Commun 2011; 407: 348-54.10.1016/j.bbrc.2011.03.02121396350Search in Google Scholar

10. Kirchberger S, Royston DJ, Boulard O et al. Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model. J Exp Med 2013; 210: 917-31.10.1084/jem.20122308364649423589566Search in Google Scholar

11. Ikutani M, Yanagibashi T, Ogasawara M et al. Identification of innate IL-5-producing cells and their role in lung eosinophil regulation and antitumour immunity. J Immunol 2012; 188: 703-13.10.4049/jimmunol.110127022174445Search in Google Scholar

12. Moro K, Yamada T, Tanabe M et al. Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature 2010; 463 (7280): 540-4.10.1038/nature0863620023630Search in Google Scholar

13. Saenz SA, Siracusa MC, Perrigoue JG et al. IL25 elicits a multipotent progenitor cell population that promotes T(H)2 cytokine responses. Nature. 2010; 464: 1362-6.10.1038/nature08901286173220200520Search in Google Scholar

14. Neill DR, Wong SH, Bellosi A et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature. 2010; 464(7293): 1367-70.10.1038/nature08900286216520200518Search in Google Scholar

15. Hurst SD, Muchamuel T, Gorman DM et al. New IL-17 family members promote Th1 or Th2 responses in the lung: in vivo function of the novel cytokine IL-25. J Immunol. 2002; 169: 443-53.10.4049/jimmunol.169.1.44312077275Search in Google Scholar

16. Chang YJ, Kim HY, Albacker LA et al. Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity. Nat Immunol. 2011; 12: 631-8.10.1038/ni.2045341712321623379Search in Google Scholar

17. Halim TY, Krauss RH, Sun AC, Takei F. Lung natural helper cells are a critical source of Th2 cell-type cytokines in protease allergen-induced airway inflammation. Immunity 2012; 36: 451-63.10.1016/j.immuni.2011.12.02022425247Search in Google Scholar

18. Bartemes KR, Iijima K, Kobayashi T, Kephart GM, McKenzie AN, Kita H. IL-33-responsive lineage-CD25+ CD44(hi) lymphoid cells mediate innate type 2 immunity and allergic inflammation in the lungs. J Immunol 2012; 188: 1503-13.10.4049/jimmunol.1102832326287722198948Search in Google Scholar

19. Barlow JL, Bellosi A, Hardman CS et al. Innate IL-13-producing nuocytes arise during allergic lung inflammation and contribute to airways hyperreactivity. J Allergy Clin Immunol 2012; 129: 191-8.10.1016/j.jaci.2011.09.04122079492Search in Google Scholar

20. Kim HY, Chang YJ, Subramanian S et al. Innate lymphoid cells responding to IL-33 mediate airway hyperreactivity independently of adaptive immunity. J Allergy Clin Immunol 2012; 129: 216-27.10.1016/j.jaci.2011.10.036324606922119406Search in Google Scholar

21. Yasuda K, Muto T, Kawagoe T et al. Contribution of IL-33-activated type II innate lymphoid cells to pulmonary eosinophilia in intestinal nematode-infected mice. Proc Natl Acad Sci U S A. 2012; 109: 3451-6.10.1073/pnas.1201042109329528722331917Search in Google Scholar

22. Wilhelm C, Hirota K, Stieglitz B et al. An IL-9 fate reporter demonstrates the induction of an innate IL-9 response in lung inflammation. Nat Immunol 2011; 12: 1071-7.10.1038/ni.2133319884321983833Search in Google Scholar

23. Monticelli LA, Sonnenberg GF, Abt MC et al. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat Immunol 2011; 12: 1045-54.10.1038/ni.2131Search in Google Scholar

24. Mirchandani AS, Salmond RJ, Liew FY. Interleukin-33 and the function of innate lymphoid cells. Trends Immunol 2012; 33: 389-96.10.1016/j.it.2012.04.00522609147Search in Google Scholar

25. Kiessling, R. Klein, E., Pross, H. & Wigzell, H. “Natural” killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukaemia cells. Characteristics of the killer cell. Eur. J. Immunol. 1975; 5: 117-121.Search in Google Scholar

26. Vonarbourg C, Mortha A, Bui VL et al. Regulated expression of nuclear receptor RORγt confers distinct functional fates to NK cell receptor-expressing RORγt+ innate lymphocytes. Immunity 2010; 33: 736-75110.1016/j.immuni.2010.10.017304272621093318Search in Google Scholar

27. Bernink JH, Peters CP, Munneke M et al. Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat Immunol. 2013; 14: 221-9.10.1038/ni.253423334791Search in Google Scholar

28. Klose CS, Flach M, Möhle L et al. Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 2014; 157: 340–56.10.1016/j.cell.2014.03.03024725403Search in Google Scholar

29. Maloy KJ, Uhlig HH. ILC1 populations join the border patrol. Immunity 2013; 38: 630-2.10.1016/j.immuni.2013.03.00523601681Search in Google Scholar

30. Cella M, Fuchs A, Vermi W et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 2009; 457: 722-725.10.1038/nature07537377268718978771Search in Google Scholar

31. Takayama T, Kamada N, Chinen H et al. Imbalance of NKp44(þ)NKp46(−) and NKp44(−) NKp46(þ) natural killer cells in the intestinal mucosa of patients with Crohn’s disease. Gastroenterology 2010; 139: 882-89210.1053/j.gastro.2010.05.04020638936Search in Google Scholar

32. Cella M, Otero K, Colonna M. Expansion of human NK-22 cells with IL-7, IL-2, and IL-1beta reveals intrinsic functional plasticity. Proc Natl Acad Sci USA 2010; 107: 10961-10966.10.1073/pnas.1005641107Search in Google Scholar

33. Geremia A, Arancibia-Cárcamo CV, Fleming MP et al. IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease. J Exp Med 2011; 208:1127-1133.10.1084/jem.20101712Search in Google Scholar

34. Cupedo T, Crellin NK, Papazian N et al. Human foetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC+ CD127+ natural killer-like cells. Nat Immunol 2009; 10: 66-74.10.1038/ni.1668Search in Google Scholar

35. Ivanov II, Diehl GE, Littman DR. Lymphoid tissue inducer cells in intestinal immunity. Curr Top Microbiol Immunol 2006; 308: 59-82.10.1007/3-540-30657-9_3Search in Google Scholar

36. Takatori H, Kanno Y, Watford WT et al. Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22. J Exp Med 2009; 206: 35-41.10.1084/jem.20072713Search in Google Scholar

37. Hepworth MR, Monticelli LA, Fung TC et al. Innate lymphoid cells regulate T-cell responses to intestinal commensal bacteria. Nature 2013; 498: 113-117.10.1038/nature12240Search in Google Scholar

38. Plunkett TA, Correa I, Miles DW and Taylor-Papadimitriou J. Breast cancer and the immune system: opportunities and pitfalls. J. Mammary Gland Biol. Neoplasia 2001. 6: 467–475.10.1023/A:1014743232598Search in Google Scholar

39. Ito N, Nakamura H, Tanaka Y and Ohgi S. Lung carcinoma: analysis of T-helper type 1 and 2 cells and T-cytotoxic type 1 and 2 cells by intracellular cytokine detection with flow cytometry. Cancer 1999. 85: 2359–2367.10.1002/(SICI)1097-0142(19990601)85:11<2359::AID-CNCR10>3.0.CO;2-ASearch in Google Scholar

40. Nishimura T, Nakui M, Sato M et al. The critical role of Th1-dominant immunity in tumour immunology. Cancer Chemother. Pharmacol. 2000. 46: 52–61.10.1007/PL00014051Search in Google Scholar

41. Dobrzanski MJ, Reome JB, Hylindand JC and Rewers-Felkins KA. CD8 mediated type 1 antitumour responses selectively modulate endogenous differentiated and nondifferentiated t cell localization, activation, and function in progressive breast cancer. J. Immunol. 2006. 177: 8191–8201.10.4049/jimmunol.177.11.8191Search in Google Scholar

42. Vujanovic NL, Basse P, Herberman RB and Whiteside TL. Antitumour functions of natural killer cells and control of metastasis. Methods 1996. 9: 394–408.10.1006/meth.1996.00448812692Search in Google Scholar

43. Hung K, Hayashi R, Lafond-Walker A, Lowenstein C, Pardoll D and Levitsky H. The central role of CD41 T cells in the antitumour immune response. J. Exp. Med. 1998. 188: 2357–2368.10.1084/jem.188.12.235722124349858522Search in Google Scholar

44. Ellyard JI, Simson L, Parish CR. Th2-mediated antitumour immunity: friend or foe? Tissue Antigens 2007. 70: 1–11.10.1111/j.1399-0039.2007.00869.x17559575Search in Google Scholar

45. Stout RD and Bottomly K. Antigen-specific activation of effector macrophages by IFN-g producing (TH1) T cell clones. Failure of IL-4-producing (TH2) T cell clones to activate effector function of macrophages. J. Immunol. 1989. 142: 760–765.10.4049/jimmunol.142.3.760Search in Google Scholar

46. Hu HM, Urba WJ and Fox BA. Gene-modified tumour vaccine with therapeutic potential shifts tumour-specific T cell response from a type 2 to a type 1 cytokine profile. J. Immunol. 1998; 161: 3033-3041.Search in Google Scholar

47. Akbari O, DeKruyff RH, Umetsu DT. Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen. Nat Immunol 2001; 2: 725-31.10.1038/9066711477409Search in Google Scholar

48. Guedez L, Jensen-Taubman S, Bourboulia D et al. TIMP-2 targets tumour-associated myeloid suppressor cells with effects in cancer immune dysfunction and angiogenesis. J Immunother 2012; 35: 502-12.10.1097/CJI.0b013e3182619c8e340208722735808Search in Google Scholar

49. Koyasu S, Moro K. Type 2 innate immune responses and the natural helper cell. Immunology 2011; 132: 475-81.10.1111/j.1365-2567.2011.03413.x307550121323663Search in Google Scholar

50. Gabitass RF, Annels NE, Stocken DD et al. Elevated myeloid-derived suppressor cells in pancreatic, oesophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin-13. Cancer Immunol Immunother 2011; 60: 1419-30.10.1007/s00262-011-1028-0317640621644036Search in Google Scholar

51. Li J, Razumilava N, Gores GJ et al. Biliary repair and carcinogenesis are mediated by IL-33-dependent cholangiocyte proliferation. J Clin Invest 2014; 124: 3241-51.10.1172/JCI73742407137024892809Search in Google Scholar

52. Patman G. Biliary tract. IL-33, innate lymphoid cells and IL-13 are required for cholangiocyte proliferation. Nat Rev Gastroenterol Hepatol 2014; 11: 456.10.1038/nrgastro.2014.10124935421Search in Google Scholar

53. Pearson C, Uhlig HH, Powrie F. Lymphoid microenvironments and innate lymphoid cells in the gut. Trends Immunol 2012; 33: 289-96.10.1016/j.it.2012.04.00422578693Search in Google Scholar

54. Chan IH, Jain R, Tessmer MS et al. Interleukin-23 is sufficient to induce rapid de novo gut tumourigenesis, independent of carcinogens, through activation of innate lymphoid cells. Mucosal Immunol 2014; 7: 842-56.10.1038/mi.2013.10124280935Search in Google Scholar

55. Murugaiyan G, Saha B. Protumour vs antitumour functions of IL-17. J Immunol 2009; 183: 4169-75.10.4049/jimmunol.090101719767566Search in Google Scholar

56. Kamanaka M, Huber S, Zenewicz LA, et al. Memory/effector (CD45RB(lo)) CD4 T cells are controlled directly by IL-10 and cause IL-22-dependent intestinal pathology. J Exp Med 2011; 208: 1027-40.10.1084/jem.20102149309234421518800Search in Google Scholar

57. Brand S, Beigel F, Olszak T, et al. IL-22 is increased in active Crohn’s disease and promotes proinflammatory gene expression and intestinal epithelial cell migration. Am J Physiol Gastrointest Liver Physiol 2006; 290: 827-38.10.1152/ajpgi.00513.200516537974Search in Google Scholar

58. Vonarbourg C, Mortha A, Bui VL et al. Regulated expression of nuclear receptor RORgammat confers distinct functional fates to NK cell receptor-expressing RORgammat(+) innate lymphocytes. Immunity 2010; 33: 736-51.10.1016/j.immuni.2010.10.017304272621093318Search in Google Scholar

59. Lim C, Savan R. The role of the IL-22/IL-22R1 axis in cancer. Cytokine Growth Factor Rev 2014; 25: 257-71.10.1016/j.cytogfr.2014.04.00524856143Search in Google Scholar

60. Savan R, McFarland AP, Reynolds DA et al. A novel role for IL-22R1 as a driver of inflammation. Blood 2011; 117: 575-84.10.1182/blood-2010-05-285908303148120971950Search in Google Scholar

61. Park O, Wang H, Weng H et al. In vivo consequences of liver-specific interleukin-22 expression in mice: implications for human liver disease progression. Hepatology 2011; 54: 252-61.10.1002/hep.24339312543221465510Search in Google Scholar

62. Riccardi C, Santoni A, Barlozzari T, Puccetti P, Herberman RB. In vivo natural reactivity of mice against tumour cells. Int J Cancer 1980; 25: 475-486.10.1002/ijc.29102504096154658Search in Google Scholar

63. Wiltrout RH, Herberman RB, Zhang SR et al. Role of organ-associated NK cells in decreased formation of experimental metastases in lung and liver. J Immunol 1985; 134: 4267-4275.10.4049/jimmunol.134.6.4267Search in Google Scholar

64. Gorelik E, Herberman RB. Radioisotope assay for evaluation of in vivo natural cell-mediated resistance of mice to local transplantation of tumour cells. Int J Cancer 1981; 27: 709-720.10.1002/ijc.29102705197287227Search in Google Scholar

65. Gorelik E, Wiltrout RH, Okumura K, Habu S, Herberman RB. Role of NK cells in the control of metastatic spread and growth of tumour cells in mice. Int J Cancer 1982; 30: 107-112.10.1002/ijc.2910300118Search in Google Scholar

66. Jovanovic I, Radosavljevic G, Milovanovic M et al. Suppressed Innate Immune Response against Mammary Carcinoma in BALB/C Mice. Ser J Exp Clin Res 2012; 13: 55-61.10.5937/sjecr13-1706Search in Google Scholar

67. Standish LJ, Sweet ES, Novack J et al. Breast cancer and the immune system. J Soc Integr Oncol 2008; 6: 158-168.Search in Google Scholar

68. Strayer DR, Carter WA, Mayberry SD et al. Low natural cytotoxicity of peripheral blood mononuclear cells in individuals with high familial incidences of cancer. Cancer Res 1984; 44: 370-374.Search in Google Scholar

69. Hacene K, Desplaces A, Brunet M, Lidereau R, Bourguignat A, Oglobine J. Competitive prognostic value of clinicopathologic and bioimmunologic factors in primary breast cancer. Cancer 1986; 57: 245-250.10.1002/1097-0142(19860115)57:2<245::AID-CNCR2820570210>3.0.CO;2-2Search in Google Scholar

70. Mohanty I, Nayak M, Nanda BK. Cell mediated immune status in carcinoma breast. Indian J Pathol Microbiol 1991; 34: 1-6.Search in Google Scholar

71. Kauschke E, Komiyama K, Moro I, Eue I, König S, Cooper EL. Evidence for perforin-like activity associated with earthworm leukocytes. Zoology (Jena) 2001; 104: 13-24.10.1078/0944-2006-00002Search in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, other