Cite

1. Singh, R., Smitha, M.S. & Singh, S.P. (2014). The role of nanotechnology in combating multi-drug resistant bacteria. J. Nanosci. Nanotechnol. 14(7), 4745–4756. DOI: 10.1166/jnn.2014.9527.10.1166/jnn.2014.9527Open DOISearch in Google Scholar

2. Stubbings, W. & Labischinski, H. (2009). New antibiotics for antibiotic-resistant bacteria. Biol. Rep. 17(1) 40–46. DOI: 10.3410/B1-40.10.3410/B1-40Open DOISearch in Google Scholar

3. Patrascu, J.M., Nedelcu, I.A., Sonmez, M., Ficai, D., Ficai, A. & Vasile, B.S. (2015). Composite scaffolds based on silver nanoparticles for biomedical applications. J. Nanomat. 8 pages. DOI: http://dx.doi.org/10.1155/2015/587989.10.1155/2015/587989Search in Google Scholar

4. Caamano, M.A., Carrillo-Morales, M. & Olivares-Trejo, J.J. (2016). Iron oxide nanoparticle improve the antibacterial activity of erythromycin. J. Bacteriol. Parasitol. 7(4), 267–270. DOI: 10.4172/2155-9597.1000267.10.4172/2155-9597.1000267Open DOISearch in Google Scholar

5. Kalishwaralal, K., Barathmanikanth, S., Pandian, S.R.K., Deepak, V. & Gurunathan, S. (2010). Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Coll. Surf. B: Biointerf. 79(2), 340–344. DOI: 10.1016/j.colsurfb.2010.04.014.10.1016/j.colsurfb.2010.04.014Open DOISearch in Google Scholar

6. Mihu, M.R., Sandkovsky, U., Han, G., Friedman, J.M., Nosanchuk, J.D. & Martinez, L.R. (2010). The use of nitric oxide releasing nanoparticles as a treatment against Acinetobacter baumannii in wound infections. Virulence 1(2), 62–67. DOI: 10.4161/viru.1.2.10038.10.4161/viru.1.2.10038Open DOISearch in Google Scholar

7. Satar, R., Syed, I.A., Rasool, M., Pushparaj, P.N. & Ansari, S.A. (2016). Investigating the antibacterial potential of agarose nanoparticles synthesized by nanoprecipitation technology. Pol. J. Chem. Technol. 18(2), 9–12. DOI: https://doi.org/10.1515/pjct-2016-0022.10.1515/pjct-2016-0022Open DOISearch in Google Scholar

8. Fang, C.T., Lai, S.Y., Yi, W.C., Hsueh, P.R., Liu, K.L. & Chang, S.C. (2007). Klebsiella pneumoniae genotype K1: an emerging pathogen that causes septic ocular or central nervous system complications from pyogenic liver abscess. Clin. Infect. Dis. 45(3), 284–290. DOI: 10.1086/519262.10.1086/519262Search in Google Scholar

9. Donlan, R.M. (2001). Biofilms and device-associated infections. Emer. Inf. Dis. 7(2), 277–281. DOI: 10.3201/eid0702.700277.10.3201/eid0702.700277Open DOISearch in Google Scholar

10. Jagnow, J. & Clegg, S. (2003). Klebsiella pneumoniae MrkD-mediated biofilm formation on extracellular matrix and collagen-coated surfaces. Microbiology 149(9), 2397–2405. DOI: 10.1099/mic.0.26434-0.10.1099/mic.0.26434-0Search in Google Scholar

11. Ash, C., Farrow, J.A., Dorsch, M., Stackenbrandt, E. & Collins, M.D. (1991). Comparative analysis of Bacillus anthracis, Bacillus cereus, and related species on the basis of reverse transcriptase of 16S rRNA. Int. J. Syst. Bacteriol. 41(3), 343–346. DOI: 10.1099/00207713-41-3-343.10.1099/00207713-41-3-343Open DOISearch in Google Scholar

12. Bottone, E.J. (2010). Bacillus Cereus, a volatile human pathogen. Clin. Microbiol. Rev. 23(2), 382–398. DOI: 10.1128/CMR.00073-09.10.1128/CMR.00073-09Open DOISearch in Google Scholar

13. Wu, W., He, Q. & Jiang, C. (2008). Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies. Nan. Res. Lett. 3(11), 397–415. DOI: 10.1007/s11671-008-9174-9.10.1007/s11671-008-9174-9Open DOISearch in Google Scholar

14. Mohapatra, M. & Anand, S. (2010). Synthesis and applications of nanostructured iron oxides/hydroxides-a review. Int. J. Eng. Sci. Technol. 2(8), 127–146. DOI: http://dx.doi.org/10.4314/ijest.v2i8.63846.10.4314/ijest.v2i8.63846Open DOISearch in Google Scholar

15. Hui, C., Shen, C., Yang, T., Bao, L., Tian, J. & Ding, H. (2008). Large-scale Fe3O4 nanoparticles soluble in water synthesized by a facile method. J. Phys. Chem. C 112(30), 11336–11339. DOI: 10.1021/jp801632p.10.1021/jp801632pOpen DOISearch in Google Scholar

16. Ahmed, T., Phul, R., Khatoon, N. & Sardar, M. (2017). Antibacterial efficacy of Ocimum sanctum leaf extract-treated iron oxide nanoparticles. New J. Chem. 41(5), 2055–2061. DOI: 10.1039/C7NJ00103G.10.1039/C7NJ00103Open DOISearch in Google Scholar

17. Irshad, R., Tahir, K., Li, B., Ahmad, A., Siddiqui, A. & Nazir, S. (2017). Antibacterial activity of biochemically capped iron oxide nanoparticles: A view towards green chemistry. J. Photochem. Photobiol. B 170(4), 241–246. DOI: 10.1016/j.jphotobiol.2017.04.020.10.1016/j.jphotobiol.2017.04.020Open DOISearch in Google Scholar

18. Mahdavi, M., Ahmad, M.B., Haron, M.J., Gharayebi, Y., Shameli, K. & Nadi, B. (2013). Fabrication and characterization of SiO2/(3-aminopropyl) triethoxysilane-coated magnetite nanoparticles for lead (II) removal from aqueous solution. J. Inorg. Organomet. Polym. Mater. 23(3), 599–607. DOI: 10.1007/s10904-013-9820-2.10.1007/s10904-013-9820-2Open DOISearch in Google Scholar

19. Majeed, M.I., Guo, J., Yan, W. & Tan, B. (2016). Preparation of magnetic iron oxide nanoparticles (MIONS) with improved saturation magnetization using multifunctional polymer ligand. Polymers 8(11), 392–408. DOI: 10.3390/polym8110392.10.3390/polym8110392Open DOISearch in Google Scholar

20. Gotic, M. & Music, S. (2007). Mossbauer FT-IR and FE SEM investigation of iron oxides precipitated from FeSO4 solutions. J. Nanostruct. 834–836(7), 445–453. DOI: https://doi.org/10.1016/j.molstruc.2006.10.059.10.1016/j.molstruc.2006.10.059Open DOISearch in Google Scholar

21. Zhang, F., Wang, P., Koberstein, J., Khalid, S. & Chan, S.W. (2004). Cerium oxidation state in ceria nanoparticles studied with X-ray photoelectron spectroscopy and absorption near edge spectroscopy. Surf. Sci. 563(1–3), 74–82. DOI: https://doi.org/10.1016/j.susc.2004.05.138.10.1016/j.susc.2004.05.138Open DOISearch in Google Scholar

22. Bavand, R., Yelon, A. & Sacher, E. (2015). X-ray photoelectron spectroscopic and morphologic studies of Ru nanoparticles deposited onto highly oriented pyrolytic graphite. Appl. Surf. Sc. 355(5), 279–289. DOI: https://doi.org/10.1016/j.apsusc.2015.06.202.10.1016/j.apsusc.2015.06.202Open DOISearch in Google Scholar

23. Yamashita, T. & Hayes, P. (2008). Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 254(8), 2441–2449. DOI: https://doi.org/10.1016/j.apsusc.2007.09.063.10.1016/j.apsusc.2007.09.063Search in Google Scholar

24. Rahman, M.M., Khan, S.B., Faisal, M., Rub, M.A., Al-Youbi, M.A. & Asiri, A.M. (2012). Electrochemical determination of olmesartan medoxomil using hydrothermally prepared nanoparticles composed SnO2-Co3O4 nanocubes in tablet dosage forms. Talanta 99(2), 924–931. DOI: https://doi.org/10.1016/j.talanta.2012.07.060.10.1016/j.talanta.2012.07.060Open DOISearch in Google Scholar

25. Kon, K. & Rai, M. (2013). Metallic nanoparticles: mechanism of antibacterial action and influencing factors. J. Comp. Clin. Path. Res. 2(3), 160–2174. DOI: 10.4178/jccph/e2015020.10.4178/jccph/e2015020Open DOISearch in Google Scholar

26. Franci, G., Falanga, A., Galdiero, S., Palomba, L., Rai, M. & Morelli, G. (2015). Silver nanoparticles as potential antibacterial agents. Molecules 20(5), 8856–8874. DOI: 10.3390/molecules20058856.10.3390/20058856Open DOISearch in Google Scholar

27. Li, H., Chen, Q., Zhao, J. & Urmila, K. (2015). Enhancing the antimicrobial activity of natural extraction using the synthetic ultrasmall metal nanoparticles. Sci. Rep. 5(5), 11033–11040. DOI: 10.1038/srep11033.10.1038/srep11033Open DOISearch in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering