Open Access

Electrostatic Force Microscopy Measurement System for Micro-topography of Non-conductive Devices


Cite

[1] Ulcinas, A., Vaitekonis, S. (2017). Rotational scanning atomic force microscopy. Nanotechnology, 28 (10), 10LT02.10.1088/1361-6528/aa5af7Search in Google Scholar

[2] Bozchalooi, I.S., Houck, A.C., Alghamdi, J.M., Youceftoumi, K. (2016). Design and control of multiactuated atomic force microscope for large-range and high-speed imaging. Ultramicroscopy,160, 213-224.10.1016/j.ultramic.2015.10.016Search in Google Scholar

[3] Maroufi, M., Fowler, A.G., Bazaei, A., Moheimani, S.O. (2015). High-stroke silicon-on-insulator MEMS nanopositioner: Control design for non-raster scan atomic force microscopy. Review of Scientific Instruments, 86 (2), 023705.10.1063/1.4907908Search in Google Scholar

[4] Barth, C., Foster, A.S., Henry, C.R., Shluger, A.L. (2011). Recent trends in surface characterization and chemistry with high - resolution scanning force methods. Advanced Materials, 23 (4), 477-501.10.1002/adma.201002270Search in Google Scholar

[5] Khoury, D.E., Arinero, R., Castellon, J., Laurentie, J., Fedorenko, V., Bechelany, M., Frechette, M.F. (2016). Detection of shell coatings from core-shell like dielectric nanoparticles with electrostatic force microscopy. In Conference on Electrical Insulation and Dielectric Phenomena. IEEE, 755-758.10.1109/CEIDP.2016.7785549Search in Google Scholar

[6] Martin, Y., Williams, C.C., Wickramasinghe, H.K. (1987). Atomic force microscope–force mapping and profiling on a sub 100-Å scale. Journal of Applied Physics, 61 (5), 4723-4729.10.1063/1.338807Search in Google Scholar

[7] Stern, J.E., Terris, B.D., Mamin, H.J., Rugar, D. (1988). Deposition and imaging of localized charge on insulator surfaces using a force microscope. Applied Physics Letters, 53, 2717-2719.10.1063/1.100162Search in Google Scholar

[8] Girard, P. (2001). Electrostatic force microscopy principles and some applications to semiconductors. Nanotechnology, 12, 485-490.10.1088/0957-4484/12/4/321Search in Google Scholar

[9] Zhao, H.B., Han, L., Wang, X.F. (2007). A new measurement system based on EFM for charges on dielectric surface in micro-nanometre scale. Insulating Materials, 40 (2), 66-68. (in Chinese)Search in Google Scholar

[10] Martin, Y., Abraham, D.W., Wickramasinghe, H.K. (1988). High resolution capacitance measurement and potentiometry by force microscopy. Applied Physics Letters, 52, 1103-1105.10.1063/1.99224Search in Google Scholar

[11] Leveque, G., Bonnet, J., Tahraoui, A., Girard, P. (1998). Observation of surface potential at nanometer scale by electrostatic force microscopy (EFM) with large signals. Materials Science and Engineering B, 51 (1-3), 197-201.10.1016/S0921-5107(97)00259-6Search in Google Scholar

[12] Sun, Z., Wang, X., Han, B. (2013). Dielectric property of binary phase composite and its interface investigated by electric force microscope. Acta Physica Sinica, 62 (03), 95-100. (in Chinese)10.7498/aps.62.030703Search in Google Scholar

[13] Villeneuvefaure, C., Boudou, L., Makasheva, K., Teyssedre, G. (2017). Methodology for extraction of space charge density profiles at nanoscale from Kelvin probe force microscopy measurements. Nanotechnology, 28 (50), 505701.10.1088/1361-6528/aa983929099719Search in Google Scholar

[14] Boularas, A., Baudoin, F., Villeneuvefaure, C., Clain, S., Teyssedre, G. (2014). Multi-dimensional modelling of electrostatic force distance curve over dielectric surface: Influence of tip geometry and correlation with experiment. Journal of Applied Physics, 116 (8).10.1063/1.4894147Search in Google Scholar

[15] Gramse, G., Gomila, G., Fumagalli, L. (2012). Quantifying the dielectric constant of thick insulators by electrostatic force microscopy: Effects of the microscopic parts of the probe. Nanotechnology, 23 (20), 205703.10.1088/0957-4484/23/20/20570322543516Search in Google Scholar

[16] Riedel, C., Alegria, A., Schwartz, G.A., Colmenero, J., Saenz, J.J. (2011). Numerical study of the lateral resolution in electrostatic force microscopy for dielectric samples. Nanotechnology, 22 (28), 285705.10.1088/0957-4484/22/28/28570521646694Search in Google Scholar

[17] Gomila, G., Gramse, G., Fumagalli, L. (2014). Finitesize effects and analytical modeling of electrostatic force microscopy applied to dielectric films. Nanotechnology, 25 (25), 255702.10.1088/0957-4484/25/25/25570224897410Search in Google Scholar

[18] Dunaevskiy, M.S., Alekseev, P.A., Girard, P., Lashkul, A.V., Lahderanta, E., Titkov, A.N. (2012). Analysis of the lateral resolution of electrostatic force gradient microscopy. Journal of Applied Physics, 112 (6).10.1063/1.4752430Search in Google Scholar

[19] Gao, W., Goto, S., Hosobuchi, K., Ito, S., Shimizu, Y. (2012). A noncontact scanning electrostatic force microscope for surface profile measurement. CIRP Annals: Manufacturing Technology, 61 (1), 471-474.10.1016/j.cirp.2012.03.097Search in Google Scholar

[20] He, G., Jia, Z., Ito, S., Shimizu, Y., Gao, W. (2014). Experiment of polarization forces in scanning electrostatic force microscopy for measuring surface profile of dielectric. The Open Electrical & Electronic Engineering Journal, 8 (1), 342-347.10.2174/1874129001408010342Search in Google Scholar

[21] Goto, S., Minglei, L.I., Ito, S., Shimizu, Y., Gao, W. (2016). A highly stable noncontact SPM for surface profile measurement and its application to insulating samples. Journal of Advanced Mechanical Design Systems and Manufacturing, 10 (5).10.1299/jamdsm.2016jamdsm0081Search in Google Scholar

eISSN:
1335-8871
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing