Microbiological Leaching; an Environmentally Friendly and Cost Effective Method for Extraction of Metals

Open access

Abstract

Finding a cleaner, environmentally friendly and cost-effective way of metal and mineral extraction has a great importance in today’s world. Using microorganisms in bio-leaching and bio-oxidation process is of great value. From Archaea to bacteria and fungi, microorganisms can play an important role in extraction of metals from mine drainage and un-accessible sources, both in aquatic and terrestrial environments. Optimization of environmental factors such as the temperature, pH and substrate concentration is crucially important to access the optimum extraction of selected metals from an ore or mine drainage. The present paper will review the bio-leaching and bio-oxidation process of minerals with emphasis on the most well-known species of bacterial communities of such ability, through the literature.

1. Acosta M., Galleguillos P., Ghorbani Y., Tapia P., Contador Y., Velásquez A., Espoz C., Pinilla C. and Demergasso C., 2014 – Variation in microbial community from predominantly mesophilic to thermotolerant and moderately thermophilic species in an industrial copper heap bio-leaching operation, Hydrometallurgy, 150, 281-289.

2. Ashton P. J., Love D., Mahachi H., Dirks P. H. G. M., 2001 – An overview of the impact of mining and mineral processing operations on water resources and water quality in the Zambezi, Limpopo and Olifants catchments in Southern Africa, Contract report to the mining, minerals and sustainable development (Southern Africa) Project, by CSIR-Environmentek, Pretoria, South Africa and Geology Department, University of Zimbabwe, Harare, Zimbabwe. Report No. ENV-P-C 2001-042.

3. Bierlein F. P. and Wilde A. R., 2010 – New constraints on the polychronous nature of the giant Muruntau gold deposit from wall-rock alteration and ore paragenetic studies, Australian Journal of Earth Sciences, 57, 839-854.

4. Chapana J. A. R. and Tributsch H., 2004 – Interfacial activity and leaching patterns of Leptospirillum ferrooxidans on pyrite, Journal of Microbiology and Ecology, 47, 19-29.

5. Cheng C. R., Ying Y. H., Sen C., Shuo Z. and Feng L. K., 2010 – Valence variation of arsenic in bioleaching process of arsenic-bearing gold ore, Transactions of Nonferrous Metals Society of China, 20, 1171-1176.

6. Ciftci H. and Akcil A., 2010 – Effect of biooxidation conditions on cyanide consumption and gold recovery from a refractory gold concentrate, Hydrometallurgy, 104, 142-149.

7. Corkhill C. L., Wincott P. L., Lloyd J. R. and Vaughan D. J., 2008 – The oxidative dissolution of arsenopyrite (FeAsS) and enargite (Cu3AsS4) by Leptospirillum ferrooxidans, Geochimica et Cosmochimica Acta, 72, 5616-5633.

8. Edwards C. D., Beatty J. C., Loiselle J. B., Vlassov K. A. and Lefebvre D. D., 2013 – Aerobic transformation of cadmium through metal sulfide biosynthesis in photosynthetic microorganisms, Biomedical central Microbiology, 13, 1, 161-172.

9. Elrich H. L., 2001 – Past, present and future of biohydrometallurgy, Hydrometallurgy, 59, 127-134.

10. Elrich H. L. and Brierley C. L., 1990 – Microbial Recovery 1st edition, Mc Graw-Hill publishing company, 3-27.

11. Fomchenko N. V., Kondrateva T. F. and Muravyov M. I., 2016 – A new concept of the biohydrometallurgical technology for gold recovery from refractory sulfide concentrates, Hydrometallurgy, 164, 78-82.

12. Fuseler K. Krekeler D. Sydow U. and Cypionka H., 1996 – A common pathway of sulfide oxidation by sulfat-reducing bacteria, Federation of European Microbiological Societies Microbiology Letters, 144, 129-134.

13. Harneit K., Goksel A., Kock D., Klock J. H., Gehrke T. and Sand W., 2006 – Adhesion to metal sulfide surfaces by cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans, Hydrometallurgy, 83, 245-254.

14. Jerez C. A. 2009 – Metal extraction and biomining, in The desk encyclopedia of microbiology; Schaechter M. (ed.), Elsevier, Oxford, UK, 762-775.

15. Khan S., Haq F., Hasan F., Saeed K. and Ullah R., 2012 – Growth and biochemical activities of Acidithiobacillus thiooxidans collected from black shale, Journal of Microbiology Research, 2, 78-83.

16. Langhans D., Lord A., Lampshire D., Burbank A. and Baglin E., 1995 – Bio-oxidation of an arsenic-bearing refractory gold ore, Minerals Engineering, 8, 147-158.

17. Lei J., Yang Z. H. and Tong P. X., 2007 – Bio-oxidation of pyrite, chalcopyrite and pyrrhotite by Acidithiobacillus ferrooxidans, Chinese Science Bulletin, 52, 2702-2714.

18. Leng F., Li K., Zhang X., Li Y., Zhu Y., Lu J. and Li H., 2009 – Comparative study of inorganic arsenic resistance of several strains of Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans, Hydrometallurgy, 98, 235-240.

19. Liu H. L., Chen B. Y., Lan Y. W. and Cheng Y. C. 2003 – SEM and AFM images of pyrite surfaces after bioleaching by the indigenous Thiobacillus thiooxidans, Applied Microbiology and Biotechnology, 62, 414-420.

20. Liu X. X., Wang G. H., Huo Q., Xie J. P., Li S. P., Wu H. Y. and Guo Y. J., 2015 – Novel two-step process to improve efficiency of bio-oxidation of Axi high-sulphur refractory gold concentrates, Transactions of Nonferrous Metals Society of China, 25, 4119-4125.

22. Liu J., Wu W., Zhang X., Zhu M. and Tan W., 2017 – Adhesion properties of factors influencing Leptospirillum ferriphilum in the biooxidation of refractory gold-bearing pyrite, International Journal of Mineral Processing, 160, 39-46.

23. Ribeiro D. A., Maretto D. A., Nogueira F. C. S., Silva M. J., Campos F. A. P., Domont G. B., Poppi R. J. and Ottoboni L. M. M., 2011 – Heat and phosphate starvation effects on the proteome, morphology and chemical composition of the biomining bacteria Acidithiobacillus ferrooxidans, World Journal of Microbiology and Biotechnology, 27, 1469-1479.

24. Sun L. X., Zhang X., Tan W. S. and Zhu M. L., 2012 – Effect of agitation intensity on the biooxidation process of refractory gold ores by Acidithiobacillus ferrooxidans, Hydrometallurgy, 127-128, 99-103.

25. Ubaldini S., Veglio F., Beolchini F., Toro L. and Abbruzzese C., 2000 – Gold recovery from a refractory pyrrhotite ore by biooxidation, International Journal of Mineral Processing, 60, 247-262.

26. Zhang X., Feng Y. L. and Li H. R., 2016 – Enhancement of bio-oxidation of refractory arsenopyritic gold ore by adding pyrolusite in bioleaching system, Transactions of Nonferrous Metals Society of China, 26, 2479-2484.

Transylvanian Review of Systematical and Ecological Research

The Journal of „Lucian Blaga“ University of Sibiu

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 270 270 18
PDF Downloads 180 180 8