Possible Role of N-Methyl-D-Aspartate Receptors in Physiology and Pathophysiology of Cardiovascular System

Open access


N-methyl-D-aspartate (NMDA) receptors belong to ionotropic glutamate receptor family, together with α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, kainite receptors and δ-receptors. All of these receptors are tetramers composed of four subunits. NMDA receptors have several unique features in relation to other ionotropic glutamate receptors: requirement for simultaneous action of two coagonists, glutamate and glycine; dual control of receptor activation, ligand-dependent (by glutamate and glycine) and voltage-dependent (Mg2+ block) control; and influx of considerable amounts of Ca2+ following receptor activation. Increasing number of researches deals with physiological and pathophysiological roles of NMDA receptors outside of nerve tissues, especially in the cardiovascular system. NMDA receptors are found in all cell types represented in cardiovascular system, and their overstimulation in pathological conditions, such as hyperhomocysteinemia, is related to a range of cardiovascular disorders. On the other hand we demonstrated that blockade of NMDA receptors depresses heart function. There is a need for the intensive study of NMDA receptor in cardiovascular system as potential theraputical target both in prevention and treatment of cardiovascular disorders.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Traynelis SF Wollmuth LP McBain CJ Menniti FS Vance KM Ogden KK Hansen KB Yuan H Myers SJ Dingledine R. (2010). Glutamate receptor ion channels: structure regulation and function. Pharmacol Rev 62(3) 405-96.

  • 2. Sobolevsky AI. (2015). Structure and gating of tetrameric glutamate receptors. J Physiol 593(1) 29-38.

  • 3. Dravid SM Erreger K Yuan H Nicholson K Le P Lyuboslavsky P Almonte A Murray E Mosely C Barber J French A Balster R Murray TF Traynelis SF. (2007). Subunit-specific mechanisms and proton sensitivity of NMDA receptor channel block. J Physiol 581(Pt 1) 107-28.

  • 4. Morris RG Anderson E Lynch GS Baudry M. (1986). Selective impairment of learning and blockade of longterm potentiation by an N-methyl-D-aspartate receptor antagonist AP5. Nature 319(6056) 774-6.

  • 5. Martin SJ Grimwood PD Morris RG. (2000). Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci 23 649-711.

  • 6. Snyder EM Nong Y Almeida CG Paul S Moran T Choi EY Nairn AC Salter MW Lombroso PJ Gouras GK Greengard P. (2005). Regulation of NMDA receptor trafficking by amyloid-beta. Nat Neurosci 8(8) 1051-8.

  • 7. Bozic M Valdivielso JM. (2015). The potential of targeting NMDA receptors outside the CNS. Expert Opin Ther Targets 19(3) 399-413.

  • 8. Morhenn VB Waleh NS Mansbridge JN Unson D Zolotorev A Cline P Toll L. (1994). Evidence for an NMDA receptor subunit in human keratinocytes and rat cardiocytes. Eur J Pharmacol 268(3) 409-14.

  • 9. Betzen C White R Zehendner CM Pietrowski E Bender B Luhmann HJ Kuhlmann CR. (2009). Oxidative stress upregulates the NMDA receptor on cerebrovascular endothelium. Free Radic Biol Med 47(8) 1212-20.

  • 10. Pang X Liu J Zhao J Mao J Zhang X Feng L Han C Li M Wang S Wu D. (2014). Homocysteine induces the expression of C-reactive protein via NMDAr-ROSMAPK- NF-κB signal pathway in rat vascular smooth muscle cells. Atherosclerosis 236(1) 73-81.

  • 11. Chen H Fitzgerald R Brown AT Qureshi I Breckenridge J Kazi R Wang Y Wu Y Zhang X Mukunyadzi P Eidt J Moursi MM. (2005). Identification of a homocysteine receptor in the peripheral endothelium and its role in proliferation. J Vasc Surg 41(5) 853-60

  • 12. Monyer H Sprengel R Schoepfer R Herb A Higuchi M Lomeli H Burnashev N Sakmann B Seeburg PH. (1992). Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256(5060) 1217-21.

  • 13. Moriyoshi K Masu M Ishii T Shigemoto R Mizuno N Nakanishi S. (1991). Molecular cloning and characterization of the rat NMDA receptor. Nature 354(6348) 31-7.

  • 14. Vyklicky V Korinek M Smejkalova T Balik A Krausova B Kaniakova M Lichnerova K Cerny J Krusek J Dittert I Horak M Vyklicky L. (2014). Structure function and pharmacology of NMDA receptor channels. Physiol Res 63 Suppl 1 191-203.

  • 15. Lin JW Wyszynski M Madhavan R Sealock R Kim JU Sheng M. (1998). Yotiao a novel protein of neuromuscular junction and brain that interacts with specific splice variants of NMDA receptor subunit NR1. J Neurosci 18(6) 2017-27.

  • 16. Perez-Otano I Schulteis CT Contractor A Lipton SA Trimmer JS Sucher NJ Heinemann SF. (2001). Assembly with the NR1 subunit is required for surface expression of NR3A-containing NMDA receptors. J Neurosci 21(4) 1228-37.

  • 17. Monyer H Burnashev N Laurie DJ Sakmann B Seeburg PH. (1994). Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12(3) 529-40.

  • 18. Matsuda K Fletcher M Kamiya Y Yuzaki M. (2003). Specific assembly with the NMDA receptor 3B subunit controls surface expression and calcium permeability of NMDA receptors. J Neurosci 23(31) 10064-73.

  • 19. Qiu S Hua YL Yang F Chen YZ Luo JH. (2005). Subunit assembly of N-methyl-d-aspartate receptors analyzed by fluorescence resonance energy transfer. J Biol Chem 280(26) 24923-30.

  • 20. Atlason PT Garside ML Meddows E Whiting P Mc-Ilhinney RA. (2007). N-Methyl-D-aspartate (NMDA) receptor subunit NR1 forms the substrate for oligomeric assembly of the NMDA receptor. J Biol Chem 282(35) 25299-307.

  • 21. Schüler T Mesic I Madry C Bartholomäus I Laube B. (2008). Formation of NR1/NR2 and NR1/NR3 heterodimers constitutes the initial step in N-methyl-D-aspartate receptor assembly. J Biol Chem 283(1) 37-46.

  • 22. Stern-Bach Y Bettler B Hartley M Sheppard PO O’Hara PJ Heinemann SF. (1994). Agonist selectivity of glutamate receptors is specified by two domains structurally related to bacterial amino acid-binding proteins. Neuron 13(6): 1345-57.

  • 23. Yuan H Hansen KB Vance KM Ogden KK Traynelis SF. (2009). Control of NMDA receptor function by the NR2 subunit amino-terminal domain. J Neurosci 29(39) 12045-58.

  • 24. Karakas E Simorowski N Furukawa H. (2009). Structure of the zinc-bound amino-terminal domain of the NMDA receptor NR2B subunit. EMBO J 28(24) 3910-20.

  • 25. Sobolevsky AI Rosconi MP Gouaux E. (2009). X-ray structure symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 462(7274) 745-56.

  • 26. Banke TG Traynelis SF. (2003). Activation of NR1/NR2B NMDA receptors. Nat Neurosci 6(2) 144-52.

  • 27. Vissel B Krupp JJ Heinemann SF Westbrook GL. (2002). Intracellular domains of NR2 alter calcium-dependent inactivation of N-methyl-D-aspartate receptors. Mol Pharmacol 61(3) 595-605.

  • 28. Aow J Dore K Malinow R. (2015). Conformational signaling required for synaptic plasticity by the NMDA receptor complex. Proc Natl Acad Sci U S A 112(47) 14711-6.

  • 29. Kleckner NW Dingledine R. (1988). Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science 241(4867) 835-7.

  • 30. Blanke ML VanDongen AMJ. (2009). Activation Mechanisms of the NMDA Receptor. In: Van Dongen AM editor. Biology of the NMDA Receptor. Boca Raton (FL): CRC Press/Taylor & Francis Chapter 13.

  • 31. Furukawa H Gouaux E. (2003). Mechanisms of activation inhibition and specificity: crystal structures of the NMDA receptor NR1 ligand-binding core. EMBO J 22(12) 2873-85.

  • 32. Kolodney G Dumin E Safory H Rosenberg D Mori H Radzishevsky I Wolosker H. (2016). Nuclear compartmentalization of serine racemase regulates d-serine production. Implications for N-methyl-D-aspartate (NMDA) receptor activation. J Biol Chem 291(6) 2630.

  • 33. Panatier A Theodosis DT Mothet JP Touquet B Pollegioni L Poulain DA Oliet SH. (2006). Glia-derived Dserine controls NMDA receptor activity and synaptic memory. Cell 125(4) 775-84.

  • 34. Furukawa H Singh SK Mancusso R Gouaux E. (2005). Subunit arrangement and function in NMDA receptors. Nature 438(7065) 185-92.

  • 35. Zhang X Nadler JV. (2009). Postsynaptic response to stimulation of the Schaffer collaterals with properties similar to those of synaptosomal aspartate release. Brain Res 1295 13-20.

  • 36. Abushik PA Niittykoski M Giniatullina R Shakirzyanova A Bart G Fayuk D Sibarov DA Antonov SM Giniatullin R. (2014). The role of NMDA and mGluR5 receptors in calcium mobilization and neurotoxicity of homocysteine in trigeminal and cortical neurons and glial cells. J Neurochem 129(2) 264-74.

  • 37. Nahum-Levy R Lipinski D Shavit S Benveniste M. (2001). Desensitization of NMDA receptor channels is modulated by glutamate agonists. Biophys J 80(5) 2152-66.

  • 38. de Sousa SL Dickinson R Lieb WR Franks NP. (2000). Contrasting synaptic actions of the inhalational general anesthetics isoflurane and xenon. Anesthesiology 92(4) 1055-66.

  • 39. Lester RA Clements JD Westbrook GL Jahr CE. (1990). Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents. Nature 346(6284) 565-7.

  • 40. Kash TL Matthews RT Winder DG. (2008). Alcohol inhibits NR2B-containing NMDA receptors in the ventral bed nucleus of the stria terminalis. Neuropsychopharmacology 33(6) 1379-90.

  • 41. Lin YJ Bovetto S Carver JM Giordano T. (1996). Cloning of the cDNA for the human NMDA receptor NR2C subunit and its expression in the central nervous system and periphery. Brain Res Mol Brain Res 43(1-2) 57-64.

  • 42. Näsström J Böö E Ståhlberg M Berge OG. (1993). Tissue distribution of two NMDA receptor antagonists [3H]CGS 19755 and [3H]MK-801 after intrathecal injection in mice. Pharmacol Biochem Behav 44(1) 9-15.

  • 43. Leung JC Travis BR Verlander JW Sandhu SK Yang SG Zea AH Weiner ID Silverstein DM. (2002). Expression and developmental regulation of the NMDA receptor subunits in the kidney and cardiovascular system. Am J Physiol Regul Integr Comp Physiol 283(4) 964-71.

  • 44. Seeber S Becker K Rau T Eschenhagen T Becker CM Herkert M. (2000). Transient expression of NMDA receptor subunit NR2B in the developing rat heart. J Neurochem 75(6) 2472-7.

  • 45. LeMaistre JL Sanders SA Stobart MJ Lu L Knox JD Anderson HD Anderson CM. (2012). Coactivation of NMDA receptors by glutamate and D-serine induces dilation of isolated middle cerebral arteries. J Cereb Blood Flow Metab 32(3) 537-47.

  • 46. Mothet JP Pollegioni L Ouanounou G Martineau M Fossier P Baux G. (2005). Glutamate receptor activation triggers a calcium-dependent and SNARE proteindependent release of the gliotransmitter D-serine. Proc Natl Acad Sci U S A 102(15) 5606-11.

  • 47. Chen H Fitzgerald R Brown AT Qureshi I Breckenridge J Kazi R Wang Y Wu Y Zhang X Mukunyadzi P Eidt J Moursi MM. (2005). Identification of a homocysteine receptor in the peripheral endothelium and its role in proliferation. J Vasc Surg 41(5) 853-60.

  • 48. Akanuma S Sakurai T Tachikawa M Kubo Y Hosoya K. (2015). Transporter-mediated L-glutamate elimination from cerebrospinal fluid: possible involvement of excitatory amino acid transporters expressed in ependymal cells and choroid plexus epithelial cells. Fluids Barriers CNS 12 11.

  • 49. Lerma J Herranz AS Herreras O Abraira V Martín del Río R. (1986). In vivo determination of extracellular concentration of amino acids in the rat hippocampus. A method based on brain dialysis and computerized analysis. Brain Res 384(1) 145-55.

  • 50. McGee MA Abdel-Rahman AA. (2012). Enhanced vascular neuronal nitric-oxide synthase-derived nitricoxide production underlies the pressor response caused by peripheral N-methyl-D-aspartate receptor activation in conscious rats. J Pharmacol Exp Ther 342(2) 461-71.

  • 51. Liu Y Zhou L Xu HF Yan L Ding F Hao W Cao JM Gao X. (2013). A preliminary experimental study on the cardiac toxicity of glutamate and the role of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor in rats. Chin Med J (Engl) 126(7) 1323-32.

  • 52. Bozic M de Rooij J Parisi E Ortega MR Fernandez E Valdivielso JM. (2011). Glutamatergic signaling maintains the epithelial phenotype of proximal tubular cells. J Am Soc Nephrol 22(6) 1099-111.

  • 53. Fahlke C Kortzak D Machtens JP. (2016). Molecular physiology of EAAT anion channels. Pflugers Arch 468(3) 491-502.

  • 54. Magi S Arcangeli S Castaldo P Nasti AA Berrino L Piegari E Bernardini R Amoroso S Lariccia V. (2013). Glutamate-induced ATP synthesis: relationship between plasma membrane Na+/Ca2+ exchanger and excitatory amino acid transporters in brain and heart cell models. Mol Pharmacol 84(4) 603-14.

  • 55. Ralphe JC Segar JL Schutte BC Scholz TD. (2004). Localization and function of the brain excitatory amino acid transporter type 1 in cardiac mitochondria. J Mol Cell Cardiol 37(1) 33-41.

  • 56. Laketić-Ljubojević I Suva LJ Maathuis FJ Sanders D Skerry TM. (1999). Functional characterization of Nmethyl-D-aspartic acid-gated channels in bone cells. Bone 25(6) 631-7.

  • 57. Shi S Liu T Li Y Qin M Tang Y Shen JY Liang J Yang B Huang C. (2014). Chronic N-methyl-D-aspartate receptor activation induces cardiac electrical remodeling and increases susceptibility to ventricular arrhythmias. Pacing Clin Electrophysiol 37(10) 1367-77

  • 58. D’Amico M Di Filippo C Rossi F Rossi F. (1999). Arrhythmias induced by myocardial ischaemia-reperfusion are sensitive to ionotropic excitatory amino acid receptor antagonists. Eur J Pharmacol 366(2-3) 167-74.

  • 59. Sun X Zhong J Wang D Xu J Su H An C Zhu H Yan J. (2014). Increasing glutamate promotes ischemiareperfusion-induced ventricular arrhythmias in rats in vivo. Pharmacology 93(1-2) 4-9.

  • 60. Gao X Xu X Pang J Zhang C Ding JM Peng X Liu Y Cao JM. (2007). NMDA receptor activation induces mitochondrial dysfunction oxidative stress and apoptosis in cultured neonatal rat cardiomyocytes. Physiol Res 56(5) 559-69.

  • 61. Tyagi N Vacek JC Givvimani S Sen U Tyagi SC. (2010). Cardiac specific deletion of N-methyl-d-aspartate receptor 1 ameliorates mtMMP-9 mediated autophagy/mitophagy in hyperhomocysteinemia. J Recept Signal Transduct Res 30(2) 78-87.

  • 62. Moshal KS Tipparaju SM Vacek TP Kumar M Singh M Frank IE Patibandla PK Tyagi N Rai J Metreveli N Rodriguez WE Tseng MT Tyagi SC. (2008). Mitochondrial matrix metalloproteinase activation decreases myocyte contractility in hyperhomocysteinemia. Am J Physiol Heart Circ Physiol 295(2) 890-7

  • 63. Meneghini A Ferreira C Abreu LC Valenti VE Ferreira M F Filho C Murad N. (2009). Memantine prevents cardiomyocytes nuclear size reduction in the left ventricle of rats exposed to cold stress. Clinics (Sao Paulo) 64(9) 921-6.

  • 64. Srejovic I Jakovljevic V Zivkovic V Jeremic N Jevdjevic M Stojic I Djuric D. (2015). The effects of glycine glutamate and their combination on cardiodynamics coronary flow and oxidative stress in isolated rat heart. Curr Res Cardiol 2(2) 63-68.

  • 65. Stojic I Srejovic I Zivkovic V Jeremic N Djuric M Stevanovic A Milanovic T Djuric D Jakovljevic V. (2017). The effects of verapamil and its combinations with glutamate and glycine on cardiodynamics coronary flow and oxidative stress in isolated rat heart. J Physiol Biochem 73(1) 141-153.

  • 66. McCully KS. (1969). Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis. Am J Pathol 56(1) 111-28.

  • 67. Steed MM Tyagi SC. (2011). Mechanisms of cardiovascular remodeling in hyperhomocysteinemia. Antioxid Redox Signal 15(7) 1927-43.

  • 68. Pizzolo F Blom HJ Choi SW Girelli D Guarini P Martinelli N Stanzial AM Corrocher R Olivieri O Friso S. (2011). Folic acid effects on s-adenosylmethionine s-adenosylhomocysteine and DNA methylation in patients with intermediate hyperhomocysteinemia. J Am Coll Nutr 30(1) 11-8.

  • 69. Jakubowski H. (2000). Homocysteine thiolactone: metabolic origin and protein homocysteinylation in humans. J Nutr 130(2S Suppl) 377-381.

  • 70. Hankey GJ Eikelboom JW. (1999). Homocysteine and vascular disease. Lancet 354(9176) 407-13.

  • 71. Herrmann W Herrmann M Joseph J Tyagi SC. (2007). Homocysteine brain natriuretic peptide and chronic heart failure: a critical review. Clin Chem Lab Med 45(12) 1633-44.

  • 72. Folbergrová J. (1994). NMDA and not non-NMDA receptor antagonists are protective against seizures induced by homocysteine in neonatal rats. Exp Neurol 130(2) 344-50.

  • 73. Tyagi N Mishra PK Tyagi SC. (2009). Homocysteine hydrogen sulfide (H2S) and NMDA-receptor in heart failure. Indian J Biochem Biophys 46(6) 441-6.

  • 74. Chang PY Lu SC Lee CM Chen YJ Dugan TA Huang WH Chang SF Liao WS Chen CH Lee YT. (2008). Homocysteine inhibits arterial endothelial cell growth through transcriptional downregulation of fibroblast growth factor-2 involving G protein and DNA methylation. Circ Res 102(8) 933-41.

  • 75. Austin RC Lentz SR Werstuck GH. (2004). Role of hyperhomocysteinemia in endothelial dysfunction and atherothrombotic disease. Cell Death Differ 11 Suppl 1 56-64.

  • 76. Tyagi N Sedoris KC Steed M Ovechkin AV Moshal KS Tyagi SC. (2005). Mechanisms of homocysteine-induced oxidative stress. Am J Physiol Heart Circ Physiol 89 2649–56.

  • 77. Kamat PK Kalani A Tyagi SC Tyagi N. (2015). Hydrogen Sulfide Epigenetically Attenuates Homocysteine- Induced Mitochondrial Toxicity Mediated Through NMDA Receptor in Mouse Brain Endothelial (bEnd3) Cells. J Cell Physiol 230(2) 378-94.

  • 78. Srejovic I Jakovljevic V Zivkovic V Barudzic N Radovanovic A Stanojlovic O Djuric DM. (2015). The effects of the modulation of NMDA receptors by homocysteine thiolactone and dizocilpine on cardiodynamics and oxidative stress in isolated rat heart. Mol Cell Biochem 401(1-2) 97-105.

Journal information
Impact Factor

CiteScore 2018: 0.13

SCImago Journal Rank (SJR) 2018: 0.118
Source Normalized Impact per Paper (SNIP) 2018: 0.079

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 100 100 11
PDF Downloads 66 66 2