Open Access

Possible Role of N-Methyl-D-Aspartate Receptors in Physiology and Pathophysiology of Cardiovascular System


Cite

1. Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R. (2010). Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev, 62(3), 405-96.10.1124/pr.109.002451Search in Google Scholar

2. Sobolevsky AI. (2015). Structure and gating of tetrameric glutamate receptors. J Physiol, 593(1), 29-38.10.1113/jphysiol.2013.264911Search in Google Scholar

3. Dravid SM, Erreger K, Yuan H, Nicholson K, Le P, Lyuboslavsky P, Almonte A, Murray E, Mosely C, Barber J, French A, Balster R, Murray TF, Traynelis SF. (2007). Subunit-specific mechanisms and proton sensitivity of NMDA receptor channel block. J Physiol, 581(Pt 1), 107-28.10.1113/jphysiol.2006.124958Search in Google Scholar

4. Morris RG, Anderson E, Lynch GS, Baudry M. (1986). Selective impairment of learning and blockade of longterm potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature, 319(6056), 774-6.10.1038/319774a0Search in Google Scholar

5. Martin SJ, Grimwood PD, Morris RG. (2000). Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci, 23, 649-711.10.1146/annurev.neuro.23.1.64910845078Open DOISearch in Google Scholar

6. Snyder EM, Nong Y, Almeida CG, Paul S, Moran T, Choi EY, Nairn AC, Salter MW, Lombroso PJ, Gouras GK, Greengard P. (2005). Regulation of NMDA receptor trafficking by amyloid-beta. Nat Neurosci, 8(8), 1051-8.1602511110.1038/nn1503Search in Google Scholar

7. Bozic M, Valdivielso JM. (2015). The potential of targeting NMDA receptors outside the CNS. Expert Opin Ther Targets, 19(3), 399-413.10.1517/14728222.2014.983900Search in Google Scholar

8. Morhenn VB, Waleh NS, Mansbridge JN, Unson D, Zolotorev A, Cline P, Toll L. (1994). Evidence for an NMDA receptor subunit in human keratinocytes and rat cardiocytes. Eur J Pharmacol, 268(3), 409-14.10.1016/0922-4106(94)90066-3Search in Google Scholar

9. Betzen C, White R, Zehendner CM, Pietrowski E, Bender B, Luhmann HJ, Kuhlmann CR. (2009). Oxidative stress upregulates the NMDA receptor on cerebrovascular endothelium. Free Radic Biol Med, 47(8), 1212-20.10.1016/j.freeradbiomed.2009.07.03419660541Search in Google Scholar

10. Pang X, Liu J, Zhao J, Mao J, Zhang X, Feng L, Han C, Li M, Wang S, Wu D. (2014). Homocysteine induces the expression of C-reactive protein via NMDAr-ROSMAPK- NF-κB signal pathway in rat vascular smooth muscle cells. Atherosclerosis, 236(1), 73-81.10.1016/j.atherosclerosis.2014.06.02125016361Search in Google Scholar

11. Chen H, Fitzgerald R, Brown AT, Qureshi I, Breckenridge J, Kazi R, Wang Y, Wu Y, Zhang X, Mukunyadzi P, Eidt J, Moursi MM. (2005). Identification of a homocysteine receptor in the peripheral endothelium and its role in proliferation. J Vasc Surg, 41(5), 853-6010.1016/j.jvs.2005.02.021Open DOISearch in Google Scholar

12. Monyer H, Sprengel R, Schoepfer R, Herb A, Higuchi M, Lomeli H, Burnashev N, Sakmann B, Seeburg PH. (1992). Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science, 256(5060), 1217-21.Search in Google Scholar

13. Moriyoshi K, Masu M, Ishii T, Shigemoto R, Mizuno N, Nakanishi S. (1991). Molecular cloning and characterization of the rat NMDA receptor. Nature, 354(6348), 31-7.Search in Google Scholar

14. Vyklicky V, Korinek M, Smejkalova T, Balik A, Krausova B, Kaniakova M, Lichnerova K, Cerny J, Krusek J, Dittert I, Horak M, Vyklicky L. (2014). Structure, function, and pharmacology of NMDA receptor channels. Physiol Res, 63 Suppl 1, 191-203.10.33549/physiolres.932678Search in Google Scholar

15. Lin JW, Wyszynski M, Madhavan R, Sealock R, Kim JU, Sheng M. (1998). Yotiao, a novel protein of neuromuscular junction and brain that interacts with specific splice variants of NMDA receptor subunit NR1. J Neurosci, 18(6), 2017-27.10.1523/JNEUROSCI.18-06-02017.1998Search in Google Scholar

16. Perez-Otano I, Schulteis CT, Contractor A, Lipton SA, Trimmer JS, Sucher NJ, Heinemann SF. (2001). Assembly with the NR1 subunit is required for surface expression of NR3A-containing NMDA receptors. J Neurosci, 21(4), 1228-37.10.1523/JNEUROSCI.21-04-01228.2001Search in Google Scholar

17. Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH. (1994). Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron, 12(3), 529-40.10.1016/0896-6273(94)90210-0Open DOISearch in Google Scholar

18. Matsuda K, Fletcher M, Kamiya Y, Yuzaki M. (2003). Specific assembly with the NMDA receptor 3B subunit controls surface expression and calcium permeability of NMDA receptors. J Neurosci, 23(31), 10064-73.10.1523/JNEUROSCI.23-31-10064.2003Search in Google Scholar

19. Qiu S, Hua YL, Yang F, Chen YZ, Luo JH. (2005). Subunit assembly of N-methyl-d-aspartate receptors analyzed by fluorescence resonance energy transfer. J Biol Chem, 280(26), 24923-30.10.1074/jbc.M41391520015888440Search in Google Scholar

20. Atlason PT, Garside ML, Meddows E, Whiting P, Mc-Ilhinney RA. (2007). N-Methyl-D-aspartate (NMDA) receptor subunit NR1 forms the substrate for oligomeric assembly of the NMDA receptor. J Biol Chem, 282(35), 25299-307.10.1074/jbc.M70277820017606616Search in Google Scholar

21. Schüler T, Mesic I, Madry C, Bartholomäus I, Laube B. (2008). Formation of NR1/NR2 and NR1/NR3 heterodimers constitutes the initial step in N-methyl-D-aspartate receptor assembly. J Biol Chem, 283(1), 37-46.10.1074/jbc.M70353920017959602Search in Google Scholar

22. Stern-Bach Y, Bettler B, Hartley M, Sheppard PO, O’Hara PJ, Heinemann SF. (1994). Agonist selectivity of glutamate receptors is specified by two domains structurally related to bacterial amino acid-binding proteins. Neuron, 13(6): 1345-57.Search in Google Scholar

23. Yuan H, Hansen KB, Vance KM, Ogden KK, Traynelis SF. (2009). Control of NMDA receptor function by the NR2 subunit amino-terminal domain. J Neurosci, 29(39), 12045-58.10.1523/JNEUROSCI.1365-09.2009277605919793963Search in Google Scholar

24. Karakas E, Simorowski N, Furukawa H. (2009). Structure of the zinc-bound amino-terminal domain of the NMDA receptor NR2B subunit. EMBO J, 28(24), 3910-20.10.1038/emboj.2009.338Search in Google Scholar

25. Sobolevsky AI, Rosconi MP, Gouaux E. (2009). X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature, 462(7274), 745-56.Search in Google Scholar

26. Banke TG, Traynelis SF. (2003). Activation of NR1/NR2B NMDA receptors. Nat Neurosci, 6(2), 144-52.10.1038/nn1000Open DOISearch in Google Scholar

27. Vissel B, Krupp JJ, Heinemann SF, Westbrook GL. (2002). Intracellular domains of NR2 alter calcium-dependent inactivation of N-methyl-D-aspartate receptors. Mol Pharmacol, 61(3), 595-605.10.1124/mol.61.3.595Open DOISearch in Google Scholar

28. Aow J, Dore K, Malinow R. (2015). Conformational signaling required for synaptic plasticity by the NMDA receptor complex. Proc Natl Acad Sci U S A, 112(47), 14711-6.10.1073/pnas.1520029112Search in Google Scholar

29. Kleckner NW, Dingledine R. (1988). Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science, 241(4867), 835-7.Search in Google Scholar

30. Blanke ML, VanDongen AMJ. (2009). Activation Mechanisms of the NMDA Receptor. In: Van Dongen AM, editor. Biology of the NMDA Receptor. Boca Raton (FL): CRC Press/Taylor & Francis, Chapter 13.Search in Google Scholar

31. Furukawa H, Gouaux E. (2003). Mechanisms of activation, inhibition and specificity: crystal structures of the NMDA receptor NR1 ligand-binding core. EMBO J, 22(12), 2873-85.10.1093/emboj/cdg303Search in Google Scholar

32. Kolodney G, Dumin E, Safory H, Rosenberg D, Mori H, Radzishevsky I, Wolosker H. (2016). Nuclear compartmentalization of serine racemase regulates d-serine production. Implications for N-methyl-D-aspartate (NMDA) receptor activation. J Biol Chem, 291(6), 2630.Search in Google Scholar

33. Panatier A, Theodosis DT, Mothet JP, Touquet B, Pollegioni L, Poulain DA, Oliet SH. (2006). Glia-derived Dserine controls NMDA receptor activity and synaptic memory. Cell, 125(4), 775-84.10.1016/j.cell.2006.02.051Search in Google Scholar

34. Furukawa H, Singh SK, Mancusso R, Gouaux E. (2005). Subunit arrangement and function in NMDA receptors. Nature, 438(7065), 185-92.Search in Google Scholar

35. Zhang X, Nadler JV. (2009). Postsynaptic response to stimulation of the Schaffer collaterals with properties similar to those of synaptosomal aspartate release. Brain Res, 1295, 13-20.1966460610.1016/j.brainres.2009.07.104Search in Google Scholar

36. Abushik PA, Niittykoski M, Giniatullina R, Shakirzyanova A, Bart G, Fayuk D, Sibarov DA, Antonov SM, Giniatullin R. (2014). The role of NMDA and mGluR5 receptors in calcium mobilization and neurotoxicity of homocysteine in trigeminal and cortical neurons and glial cells. J Neurochem, 129(2), 264-74.10.1111/jnc.12615Search in Google Scholar

37. Nahum-Levy R, Lipinski D, Shavit S, Benveniste M. (2001). Desensitization of NMDA receptor channels is modulated by glutamate agonists. Biophys J, 80(5), 2152-66.10.1016/S0006-3495(01)76188-7Search in Google Scholar

38. de Sousa SL, Dickinson R, Lieb WR, Franks NP. (2000). Contrasting synaptic actions of the inhalational general anesthetics isoflurane and xenon. Anesthesiology, 92(4), 1055-66.1075462610.1097/00000542-200004000-0002410754626Search in Google Scholar

39. Lester RA, Clements JD, Westbrook GL, Jahr CE. (1990). Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents. Nature, 346(6284), 565-7.Search in Google Scholar

40. Kash TL, Matthews RT, Winder DG. (2008). Alcohol inhibits NR2B-containing NMDA receptors in the ventral bed nucleus of the stria terminalis. Neuropsychopharmacology, 33(6), 1379-90.10.1038/sj.npp.1301504Open DOISearch in Google Scholar

41. Lin YJ, Bovetto S, Carver JM, Giordano T. (1996). Cloning of the cDNA for the human NMDA receptor NR2C subunit and its expression in the central nervous system and periphery. Brain Res Mol Brain Res, 43(1-2), 57-64.10.1016/S0169-328X(96)00146-5Open DOISearch in Google Scholar

42. Näsström J, Böö E, Ståhlberg M, Berge OG. (1993). Tissue distribution of two NMDA receptor antagonists, [3H]CGS 19755 and [3H]MK-801, after intrathecal injection in mice. Pharmacol Biochem Behav, 44(1), 9-15.10.1016/0091-3057(93)90275-XOpen DOISearch in Google Scholar

43. Leung JC, Travis BR, Verlander JW, Sandhu SK, Yang SG, Zea AH, Weiner ID, Silverstein DM. (2002). Expression and developmental regulation of the NMDA receptor subunits in the kidney and cardiovascular system. Am J Physiol Regul Integr Comp Physiol, 283(4), 964-71.10.1152/ajpregu.00629.200112228067Search in Google Scholar

44. Seeber S, Becker K, Rau T, Eschenhagen T, Becker CM, Herkert M. (2000). Transient expression of NMDA receptor subunit NR2B in the developing rat heart. J Neurochem, 75(6), 2472-7.10.1046/j.1471-4159.2000.0752472.x11080199Search in Google Scholar

45. LeMaistre JL, Sanders SA, Stobart MJ, Lu L, Knox JD, Anderson HD, Anderson CM. (2012). Coactivation of NMDA receptors by glutamate and D-serine induces dilation of isolated middle cerebral arteries. J Cereb Blood Flow Metab, 32(3), 537-47.10.1038/jcbfm.2011.161329311822068228Search in Google Scholar

46. Mothet JP, Pollegioni L, Ouanounou G, Martineau M, Fossier P, Baux G. (2005). Glutamate receptor activation triggers a calcium-dependent and SNARE proteindependent release of the gliotransmitter D-serine. Proc Natl Acad Sci U S A, 102(15), 5606-11.10.1073/pnas.040848310255624315800046Open DOISearch in Google Scholar

47. Chen H, Fitzgerald R, Brown AT, Qureshi I, Breckenridge J, Kazi R, Wang Y, Wu Y, Zhang X, Mukunyadzi P, Eidt J, Moursi MM. (2005). Identification of a homocysteine receptor in the peripheral endothelium and its role in proliferation. J Vasc Surg, 41(5), 853-60.1588667110.1016/j.jvs.2005.02.02115886671Search in Google Scholar

48. Akanuma S, Sakurai T, Tachikawa M, Kubo Y, Hosoya K. (2015). Transporter-mediated L-glutamate elimination from cerebrospinal fluid: possible involvement of excitatory amino acid transporters expressed in ependymal cells and choroid plexus epithelial cells. Fluids Barriers CNS, 12, 11.10.1186/s12987-015-0006-x442592125925580Search in Google Scholar

49. Lerma J, Herranz AS, Herreras O, Abraira V, Martín del Río R. (1986). In vivo determination of extracellular concentration of amino acids in the rat hippocampus. A method based on brain dialysis and computerized analysis. Brain Res, 384(1), 145-55.Search in Google Scholar

50. McGee MA, Abdel-Rahman AA. (2012). Enhanced vascular neuronal nitric-oxide synthase-derived nitricoxide production underlies the pressor response caused by peripheral N-methyl-D-aspartate receptor activation in conscious rats. J Pharmacol Exp Ther, 342(2), 461-71.10.1124/jpet.112.19446422580349Search in Google Scholar

51. Liu Y, Zhou L, Xu HF, Yan L, Ding F, Hao W, Cao JM, Gao X. (2013). A preliminary experimental study on the cardiac toxicity of glutamate and the role of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor in rats. Chin Med J (Engl), 126(7), 1323-32.Search in Google Scholar

52. Bozic M, de Rooij J, Parisi E, Ortega MR, Fernandez E, Valdivielso JM. (2011). Glutamatergic signaling maintains the epithelial phenotype of proximal tubular cells. J Am Soc Nephrol, 22(6), 1099-111.10.1681/ASN.2010070701Open DOISearch in Google Scholar

53. Fahlke C, Kortzak D, Machtens JP. (2016). Molecular physiology of EAAT anion channels. Pflugers Arch, 468(3), 491-502.10.1007/s00424-015-1768-3Search in Google Scholar

54. Magi S, Arcangeli S, Castaldo P, Nasti AA, Berrino L, Piegari E, Bernardini R, Amoroso S, Lariccia V. (2013). Glutamate-induced ATP synthesis: relationship between plasma membrane Na+/Ca2+ exchanger and excitatory amino acid transporters in brain and heart cell models. Mol Pharmacol, 84(4), 603-14.10.1124/mol.113.087775Open DOISearch in Google Scholar

55. Ralphe JC, Segar JL, Schutte BC, Scholz TD. (2004). Localization and function of the brain excitatory amino acid transporter type 1 in cardiac mitochondria. J Mol Cell Cardiol, 37(1), 33-41.10.1016/j.yjmcc.2004.04.008Open DOISearch in Google Scholar

56. Laketić-Ljubojević I, Suva LJ, Maathuis FJ, Sanders D, Skerry TM. (1999). Functional characterization of Nmethyl-D-aspartic acid-gated channels in bone cells. Bone, 25(6), 631-7.10.1016/S8756-3282(99)00224-0Open DOISearch in Google Scholar

57. Shi S, Liu T, Li Y, Qin M, Tang Y, Shen JY, Liang J, Yang B, Huang C. (2014). Chronic N-methyl-D-aspartate receptor activation induces cardiac electrical remodeling and increases susceptibility to ventricular arrhythmias. Pacing Clin Electrophysiol, 37(10), 1367-7710.1111/pace.12430Search in Google Scholar

58. D’Amico M, Di Filippo C, Rossi F, Rossi F. (1999). Arrhythmias induced by myocardial ischaemia-reperfusion are sensitive to ionotropic excitatory amino acid receptor antagonists. Eur J Pharmacol, 366(2-3), 167-74.10.1016/S0014-2999(98)00914-5Search in Google Scholar

59. Sun X, Zhong J, Wang D, Xu J, Su H, An C, Zhu H, Yan J. (2014). Increasing glutamate promotes ischemiareperfusion-induced ventricular arrhythmias in rats in vivo. Pharmacology, 93(1-2), 4-9.10.1159/00035631124401762Search in Google Scholar

60. Gao X, Xu X, Pang J, Zhang C, Ding JM, Peng X, Liu Y, Cao JM. (2007). NMDA receptor activation induces mitochondrial dysfunction, oxidative stress and apoptosis in cultured neonatal rat cardiomyocytes. Physiol Res, 56(5), 559-69.1692545810.33549/physiolres.93105316925458Search in Google Scholar

61. Tyagi N, Vacek JC, Givvimani S, Sen U, Tyagi SC. (2010). Cardiac specific deletion of N-methyl-d-aspartate receptor 1 ameliorates mtMMP-9 mediated autophagy/mitophagy in hyperhomocysteinemia. J Recept Signal Transduct Res, 30(2), 78-87.10.3109/10799891003614808292188920170426Search in Google Scholar

62. Moshal KS, Tipparaju SM, Vacek TP, Kumar M, Singh M, Frank IE, Patibandla PK, Tyagi N, Rai J, Metreveli N, Rodriguez WE, Tseng MT, Tyagi SC. (2008). Mitochondrial matrix metalloproteinase activation decreases myocyte contractility in hyperhomocysteinemia. Am J Physiol Heart Circ Physiol, 295(2), 890-710.1152/ajpheart.00099.2008251921118567713Search in Google Scholar

63. Meneghini A, Ferreira C, Abreu LC, Valenti VE, Ferreira M, F Filho C, Murad N. (2009). Memantine prevents cardiomyocytes nuclear size reduction in the left ventricle of rats exposed to cold stress. Clinics (Sao Paulo), 64(9), 921-6.1975988710.1590/S1807-59322009000900014274513419759887Search in Google Scholar

64. Srejovic I, Jakovljevic V, Zivkovic V, Jeremic N, Jevdjevic M, Stojic I, Djuric D. (2015). The effects of glycine, glutamate and their combination on cardiodynamics, coronary flow and oxidative stress in isolated rat heart. Curr Res Cardiol, 2(2), 63-68.10.4172/2368-0512.1000031Search in Google Scholar

65. Stojic I, Srejovic I, Zivkovic V, Jeremic N, Djuric M, Stevanovic A, Milanovic T, Djuric D, Jakovljevic V. (2017). The effects of verapamil and its combinations with glutamate and glycine on cardiodynamics, coronary flow and oxidative stress in isolated rat heart. J Physiol Biochem, 73(1), 141-153.10.1007/s13105-016-0534-027812957Search in Google Scholar

66. McCully KS. (1969). Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis. Am J Pathol, 56(1), 111-28.Search in Google Scholar

67. Steed MM, Tyagi SC. (2011). Mechanisms of cardiovascular remodeling in hyperhomocysteinemia. Antioxid Redox Signal, 15(7), 1927-43.10.1089/ars.2010.3721315917921126196Search in Google Scholar

68. Pizzolo F, Blom HJ, Choi SW, Girelli D, Guarini P, Martinelli N, Stanzial AM, Corrocher R, Olivieri O, Friso S. (2011). Folic acid effects on s-adenosylmethionine, s-adenosylhomocysteine, and DNA methylation in patients with intermediate hyperhomocysteinemia. J Am Coll Nutr, 30(1), 11-8.10.1080/07315724.2011.1071993921697534Search in Google Scholar

69. Jakubowski H. (2000). Homocysteine thiolactone: metabolic origin and protein homocysteinylation in humans. J Nutr, 130(2S Suppl), 377-381.10.1093/jn/130.2.377S10721911Search in Google Scholar

70. Hankey GJ, Eikelboom JW. (1999). Homocysteine and vascular disease. Lancet, 354(9176), 407-13.Search in Google Scholar

71. Herrmann W, Herrmann M, Joseph J, Tyagi SC. (2007). Homocysteine, brain natriuretic peptide and chronic heart failure: a critical review. Clin Chem Lab Med, 45(12), 1633-44.10.1515/CCLM.2007.36018067448Search in Google Scholar

72. Folbergrová J. (1994). NMDA and not non-NMDA receptor antagonists are protective against seizures induced by homocysteine in neonatal rats. Exp Neurol, 130(2), 344-50.10.1006/exnr.1994.12137867764Search in Google Scholar

73. Tyagi N, Mishra PK, Tyagi SC. (2009). Homocysteine, hydrogen sulfide (H2S) and NMDA-receptor in heart failure. Indian J Biochem Biophys, 46(6), 441-6.Search in Google Scholar

74. Chang PY, Lu SC, Lee CM, Chen YJ, Dugan TA, Huang WH, Chang SF, Liao WS, Chen CH, Lee YT. (2008). Homocysteine inhibits arterial endothelial cell growth through transcriptional downregulation of fibroblast growth factor-2 involving G protein and DNA methylation. Circ Res, 102(8), 933-41.1830909910.1161/CIRCRESAHA.108.17108218309099Search in Google Scholar

75. Austin RC, Lentz SR, Werstuck GH. (2004). Role of hyperhomocysteinemia in endothelial dysfunction and atherothrombotic disease. Cell Death Differ, 11 Suppl 1, 56-64.10.1038/sj.cdd.440145115243582Open DOISearch in Google Scholar

76. Tyagi N, Sedoris KC, Steed M, Ovechkin AV, Moshal KS, Tyagi SC. (2005). Mechanisms of homocysteine-induced oxidative stress. Am J Physiol Heart Circ Physiol, 89, 2649–56.10.1152/ajpheart.00548.200516085680Search in Google Scholar

77. Kamat PK, Kalani A, Tyagi SC, Tyagi N. (2015). Hydrogen Sulfide Epigenetically Attenuates Homocysteine- Induced Mitochondrial Toxicity Mediated Through NMDA Receptor in Mouse Brain Endothelial (bEnd3) Cells. J Cell Physiol, 230(2), 378-94.10.1002/jcp.24722430535725056869Search in Google Scholar

78. Srejovic I, Jakovljevic V, Zivkovic V, Barudzic N, Radovanovic A, Stanojlovic O, Djuric DM. (2015). The effects of the modulation of NMDA receptors by homocysteine thiolactone and dizocilpine on cardiodynamics and oxidative stress in isolated rat heart. Mol Cell Biochem, 401(1-2), 97-105.10.1007/s11010-014-2296-825467376Search in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, other