Role of Calcium Channel Blockers in Myocardial Preconditioning

Open access

Abstract

Coronary heart disease is the leading cause of mortality and morbidity worldwide. The effects of coronary heart disease are usually attributable to the detrimental effects of acute myocardial ischaemia-reperfusion injury. Newer strategies such as ischaemic or pharmacological preconditioning have been shown to condition the myocardium to ischaemia-reperfusion injury and thus reduce the final infarct size. This review investigates the role of calcium channel blockers in myocardial preconditioning. Additionally, special attention is given to nicorandil whose mechanism of action may be associated with the cardioprotective effects of preconditioning. There are still many uncertainties in understanding the role of these agents in preconditioning, but future research in this direction will certainly help reduce coronary heart disease.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Piper HM Garcia-Dorado D Ovize M. A fresh look at reperfusion injury. Cardiovasc Res. 1998;38(2):291-300.

  • 2. Vinod NK Rupinder SM Murugesan C. Myocardial ischaemic preconditioning. Indian Journal of Anaesthesia. 2004;48:93.

  • 3. Duan HF Wu CT Wu DL et al. Treatment of myocardial ischemia with bone marrow-derived mesenchymal stem cells overexpressing hepatocyte growth factor. Molecular therapy. 2003;8(3):467-74.

  • 4. Przyklenk K Kloner RA. Ischemic preconditioning: exploring the paradox. Progress in cardiovascular diseases. 1998;40:517-47.

  • 5. Alserius T Hammar N Nordqvist T Ivert T. Risk of death or acute myocardial infarction 10 years after coronary artery bypass surgery in relation to type of diabetes. Am Heart J. 2006;152(3):599-605.

  • 6. Cutrn JC Perrelli MG Cavalieri B Peralta C Rosell Catafau J Poli J. Microvascular dysfunction induced by reperfusion injury and protective effect of ischemic preconditioning. Free Radic Biol Med. 2002;33(9):1200-8.

  • 7. Janoff A. Alterations in lysosomes (intracellular enzymes) during shock; effects of preconditioning (tolerance) and protective drugs. International anesthesiology clinics. 1964;2(2):251-70.

  • 8. Muller DWM Topol EJ Califf RM Sigmon KN Gorman L. Relationship between antecedent angina pectoris and short term prognosis after thrombolytic therapy for acute myocardial infarction. Am Heart J. 1990;119:224-31.

  • 9. Pomerantz BJ Joo K Shames BD Cleveland JC Jr Banerjee A Harken AH. Adenosine preconditioning reduces both pre and postischemic arrhythmias in human myocardium. J Surg Res. 2000;90(2):191-6.

  • 10. Luh SP Yang PC. Organ preconditioning: the past current status and related lung studies. J Zhejiang Univ Sci B. 2006;7(5):331-41.

  • 11. Murry CE Jennings RB Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74:1124-36.

  • 12. Liu Y Downey JM. Ischemic preconditioning protects against infarction in rat heart. Am J Physiol. 1992;263:H1107-12.

  • 13. Liu GS Thornton J Van Winkle DM et al. Protection against infarction afforded by preconditioning is mediated by A1 adenosine receptors in rabbit heart. Circulation. 1991;84:350-6.

  • 14. Schott RJ Rohmann S Braun ER et al. Ischemic preconditioning reduces infarct size in swine myocardium. Circ Res. 1990;66:1133-42.

  • 15. Kloner Ra Shook T Przyklenk K et al. Previous angina alters in-hospital outcome in TIMI 4: a clinical correlate to preconditioning? Circulation. 1995;91:37-45.

  • 16. Sanada S Komuro I Kitakaze M. Pathophysiology of myocardial reperfusion injury: preconditioning postconditioning and translational aspects of protective measures. Am J Physiol Heart Circ Physiol. 2011;301(5):1723-41.

  • 17. Yellon DM Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med. 2007;357(11):1121-35

  • 18. Iliodromitis EK Lazou A Kremastinos DT. Ischemic preconditioning: protection against myocardial necrosis and apoptosis. Vasc Health Risk Manag. 2007;3(5):629-37.

  • 19. Speechly-Dick ME Mocanu MM Yellon DM. Protein kinase C: its role in ischemic preconditioning in the rat. Circ Res. 1994;75:586-90.

  • 20. Steenbergen C Fralix TA Murphy E. Role of increased cytosolic free calcium concentration in myocardial ischemic injury. Basic Res Cardiol 1993;88:456-70.

  • 21. Silverman HS Stern MD. Ionic basis of ischaemic cardiac injury: insights from cellular studies. Cardiovasc Res 1994;28:581-97.

  • 22. Liu Y Sato T O’Rourke B Marban E. Mitochondrial ATP-dependent potassium channels: novel effectors of cardioprotection? Circulation. 1998;97(24):2463-9.

  • 23. Crossman DC. The pathophysiology of myocardial ischaemia. Heart. 2004;90(5):576-80.

  • 24. Jones CJ Kuo L Davis MJ et al. Role of nitric oxide in the coronary microvascular responses to adenosine and increased metabolic demand. Circulation. 1995;91:1807-13.

  • 25. Meldrum DR. Mechanisms of cardiac preconditioning: ten years after the discovery of ischemic preconditioning. J Surg Res. 1997;73(1):1-13.

  • 26. Hausenloy DJ Yellon DM. Myocardial ischemia-reperfusion injury: a neglected therapeutic target. J Clin Invest. 2013;123(1):92-100.

  • 27. Jennings RB Reimer KA. The cell biology of acute myocardial ischemia. Annu Rev Med. 1991;42:225-46.

  • 28. Verma S Fedak PW Weisel RD et al. Fundamentals of reperfusion injury for the clinical cardiologist. Circulation. 2002;105(20):2332-6.

  • 29. Mittal D Taliyan R Sharma PL Yadav HN. Effect of pioglitazone on the abrogated cardioprotective effect of ischemic preconditioning in hyperlipidemic rat heart. Indian J Pharmacol. 2016;48(1):59-63.

  • 30. Dorsch M Behmenburg F Raible M et al. Morphine-Induced Preconditioning: Involvement of Protein Kinase A and Mitochondrial Permeability Transition Pore. PLoS One. 2016;11(3):e0151025.

  • 31. Müllenheim J Ebel D Frässdorf J Preckel B Thämer V Schlack W. Isoflurane preconditions myocardium against infarction via release of free radicals. Anesthesiology. 2002;96(4):934–40.

  • 32. Jeremic N Petkovic A Srejovic I Zivkovic V Djuric D Jakovljevic V. Effects of ischemia and omeprazole preconditioning on functional recovery of isolated rat heart. Rev Bras Cir Cardiovasc. 2015;30(2):266-75.

  • 33. Miyawaki H Ashraf M. Ca2+ as a mediator of ischemic preconditioning. Circ Res. 1997;80: 790-9.

  • 34. Smith GB Stefenelli T Wu ST Wilkman-Coffelt J Parmley WW Zaugg CE. Rapid adaptation of myocardial calcium homeostasis to short episodes of ischemia in isolated rat hearts. Am Heart J. 1996;131:1106-1112.

  • 35. Dagenais F Cartier R Hollmann C Buluran J. Calcium-channel blockers preserve coronary endothelial reactivity after ischemia-reperfusion. Ann Thorac Surg. 1997;63:1050-6.

  • 36. Hugtenburg JG Van Voorst MJ Van Marle J et al. The influence of nifedipine and mioflazine on mitochondrial calcium overload in normoxic and ischaemic guinea-pig hearts. Eur J Pharmacol. 1990;178:71-8.

  • 37. Braunwald E. Mechanism of action of calcium-channel-blocking agents. New England Journal of Medicine. 1982; 307(26):1618-27.

  • 38. Brichard G Zimmermann PE. Verapamil in cardiac dysrhythmias during anesthesia. British Journal of anesthesia. 1970;42(11):1005-12.

  • 39. Freher M Challapalli S Pinto JV Schwartz J Bonow RO Gheorgiade M. Current status of calcium channel blockers in patients with cardiovascular disease. Curr Probl Cardiol. 1999;24:236-40.

  • 40. Weir MR. Calcium channel blockers: differences between subclasses. Am J Cardiovasc Drugs. 2007;7:5-15.

  • 41. Frishman W.H. Calcium channel blockers: differences between subclasses. Am J Cardiovasc Drugs. 2007;7:17-23.

  • 42. Hofmann F Lacinova L Klugbauer N. Voltage-dependent calcium channels: From structure to function. Rev Physiol Biochem Pharmacol. 1999;139:33-87.

  • 43. Cleophas TJ van Marun R. Meta-analysis of efficacy and safety of second-generation dihydropyridine calcium channel blockers in heart failure. Am J Cardiol. 2001;87:487-90.

  • 44. Ruzicka M Leenen FH. Relevance of 24 H blood pressure profile and sympathetic activity for outcome on short-versus long-acting 14-dihydropyridines. Am J Hypertens. 1996;9:86-94.

  • 45. Millar JA McLean KA Sumner DJ et al. The effect of the calcium antagonist nifedipine on pressor and aldosterone responses to angiotensin II in normal man. Eur J Clin Pharmacol. 1983;24:315-21.

  • 46. Krishna GG Riley LJ Deuter G et al. Natriuretic effect of calcium-channel blockers in hypertensives. Am J Kidney Dis. 1991;18:566-72.

  • 47. Cutler JA. Calcium-channel blocker for hypertension-uncertainty continues. N Engl J Med. 1998; 338:679-81.

  • 48. Psaty BM Heckbert SR Koepsell TD et al. The risk of myocardial infarction associated with antihypertensive drug therapies. JAMA. 1995;274:620-5.

  • 49. Shen AC Jennings RB. Myocardial calcium and magnesium in acute ischemic injury. Am J Pathol. 1972;67(3):417-40.

  • 50. Kiowski W Buhler FR Fadayomi MO et al. Age race blood pressure and renin: predictors for antihypertensive treatment with calcium antagonists. Am J Cardiol. 1985;56:81-5.

  • 51. Sica DA. Pharmacotherapy review: calcium channel blockers. J Clin Hypertens (Greenwich). 2006;8(1):53-6.

  • 52. Curt FD Psaty MB Meyer VJ. Nifedipine dose-related increase in mortality in patients with coronary heart disease. Circulation. 1995;92:1326-31.

  • 53. Waters D. Proischemic complications of dihydropyridine calcium channel blockers. Circulation. 1991;84:2598-2600.

  • 54. Cain BS Meldrum DR Cleveland JC Jr Meng X Banerjee A Harken AH. Clinical L-type Ca(2+) channel blockade prevents ischemic preconditioning of human myocardium. J Mol Cell Cardiol. 1999;31(12):2191-7.

  • 55. Wallbridge DR Schulz R Braun C Post H Heusch G. No attenuation of ischaemic preconditioning by the calcium antagonist nisoldipine. J Mol Cell Cardiol. 1996;28(8):1801-10.

  • 56. Camara AK Chen Q Rhodes SS Riess ML Stowe DF. Negative inotropic drugs alter indexes of cytosolic [Ca(2+)]-left ventricular pressure relationships afterischemia. Am J Physiol Heart Circ Physiol. 2004;287(2):H667-80.

  • 57. Dilmac N Hilliard N Hockerman GH: Molecular determinants of frequency dependence and Ca2+ potentiation of verapamil block in the pore region of Cav1.2. Mol Pharmacol. 2004;66(5):1236-47.

  • 58. Miyawaki H Zhou X Ashraf M. Calcium preconditioning elicits strong protection against ischemic injury via protein kinase C signaling pathway. Circ Res. 1996;79:137-146.

  • 59. Henry PD. Comparative pharmacology of calcium antagonists: nifedipine verapamil and diltiazem. The American journal of cardiology. 1980;46(6):1047-58.

  • 60. Yu W Wang JJ Gan WY Lin GS Huang CX. Effects of verapamil preconditioning on cardiac function in vitro and intracellular free Ca2+ and L-type calcium current in rat cardiomyocytes post ischemia-reperfusion injury. Zhonghua Xin Xue Guan Bing Za Zhi. 2010;38(3):225-9.

  • 61. Okuda K Nohara R Ogino M et al. Limitation of infarct size with preconditioning and calcium antagonist (Diltiazem): Difference in 99mTc-PYP uptake in the myocardium. Annals of nuclear medicine. 1996;10(2):201-9.

  • 62. De Jong JW Harmsen E De Tombe PP. Diltiazem administered before or during myocardial ischemia decreases adenine nucleotide catabolism. J Mol Cell Cardiol. 1984;16(4):363-70.

  • 63. Taira N. Nicorandil as a hybrid between nitrates and potassium channel activators. Am J Cardiol. 1989;63:18J-24J.

  • 64. The IONA Study Group. Effect of nicorandil on coronary events in patients with stable angina: the impact of nicorandil in angina (IONA) randomized trial. Lancet 2002;359:1269–75.

  • 65. Lablanche JM Bauters C Leroy F et al. Prevention of coronary spasm by nicorandil: Comparison with nifedipine. J Cardiovasc Pharmacol. 1992;20:S82–5.

  • 66. Ohno Y Minatoguchi S Uno Y Kariya T Arai M Yamashita K Fujiwara T Fujiwara H. Nicorandil reduces myocardial infarct size by opening the K(ATP) channel in rabbits. Int J Cardiol. 1997;62(3):181-90.

  • 67. Matsubara T Minatoguchi S Matsuo H et al. Three minute but not one minute ischemia and nicorandil have a preconditioning effect in patients with coronary artery disease. J Am Coll Cardiol. 2000;35(2):345-51.

  • 68. Tang XL Xuan YT Zhu Y Shirk G Bolli R. Nicorandil induces late preconditioning against myocardial infarction in conscious rabbits. Am J Physiol Heart Circ Physiol. 2004;286(4):H1273-80.

  • 69. Ahmed LA Salem HA Attia AS Agha AM. Pharmacological preconditioning with nicorandil and pioglitazone attenuates myocardial ischemia/reperfusion injury in rats. Eur J Pharmacol. 2011;663(1-3):51-8.

  • 70. Rajesh KG Sasaguri S Zhitian Z Suzuki R Asakai R Maeda H. Second window of ischemic preconditioning regulates mitochondrial permeability transition pore by enhancing Bcl-2 expression. Cardiovasc Res. 2003;59(2):297-307.

  • 71. Matsuo H Watanabe S Segawa T et al. Evidence of pharmacologic preconditioning during PTCA by intravenous pretreatment with ATP-sensitive K+ channel opener nicorandil. Eur Heart J. 2003;24(14):1296-303.

  • 72. Sakai K Yamagata T Teragawa H Matsuura H Chayama K. Nicorandil enhances myocardial tolerance to ischemia without progressive collateral recruitment during coronary angioplasty. Circulation journal. 2002;66(4):317-22.

  • 73. Kitakaze M Asakura M Kim J et al. Human atrial natriuretic peptide and nicorandil as adjuncts to reperfusion treatment for acute myocardial infarction (J-WIND): 2 randomised trials. Lancet. 2007;370(9597):1483-93.

Search
Journal information
Impact Factor


CiteScore 2018: 0.13

SCImago Journal Rank (SJR) 2018: 0.118
Source Normalized Impact per Paper (SNIP) 2018: 0.079

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 230 108 10
PDF Downloads 112 70 3