Numerical Approach in Recognition of Selected Features of Rock Structure from Hybrid Hydrocarbon Reservoir Samples Based on Microtomography


The study employs numerical calculations in the characterization of reservoir sandstone samples based on high-resolution X-ray computed microtomography. The major goals were to determine porosity through pore size distribution, permeability characterization through pressure field, and structure impact on rock strength by simulation of a uniaxial compression test. Two Miocene samples were taken from well S-3, located in the eastern part of the Carpathian Foredeep. Due to the relation between sample size and image resolution, two X-ray irradiation series with two different sample sizes were performed. In the first approach, the voxel side was 27 μm and in the second it was up to 2 μm. Two samples from different depths have been studied here. Sample 1 has petrophysical features of conventional reservoir deposits, in contrast to sample 2. The approximate grain size of sample 1 is in the range 0.1-1.0 mm, whereas for sample 2 it is 0.01-0.1 mm with clear sedimentation lamination and heterogenic structure. The porosity, as determined by μCT, of sample 1 is twice (10.3%) that of sample 2 (5.3%). The equivalent diameter of a majority of pores is less than 0.027 mm and their pore size distribution is unimodal right-hand asymmetrical in the case of both samples. In relation to numerical permeability tests, the flow paths are in the few privileged directions where the pressure is uniformly decreasing. Nevertheless, there are visible connections in sample 1, as is confirmed by the homogenous distribution of particles in the pore space of the sample and demonstrated in the particle flow simulations. The estimated permeability of the first sample is approximately four times higher than that of the second one. The uniaxial compression test demonstrated the huge impact of even minimal heterogeneity of samples in terms of micropores: 4-5 times loss of strength compared to the undisturbed sample. The procedure presented shows the promising combination of microstructural analysis and numerical simulations. More specific calculations of lab tests with analysis of variable boundary conditions should be performed in the future.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] APPOLONI C.R., FERNANDES C.P., RODRIGUES C.R.O., X-ray microtomography study of a sandstone reservoir rock, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 580(1), 629-632, DOI: 10.1016/ j.nima.2007.05.027.

  • [2] BAKER D.R., MANCINI L., POLACCI M., HIGGINS M.D., GUALDA G.A.R., HILL R.J., RIVERS M.L., An introduction to the application of X-ray microtomography to the threedimensional study of igneous rocks, Lithos, 2016, 148, 262-276, DOI: 10.1016/j.lithos.2012.06.008.

  • [3] BECKERS E., PLOUGONVEN E., ROISIN C., HAPCA S., LÉONARD A., DEGRÉ A., X-ray microtomography: A porositybased thresholding method to improve soil pore network characterization?, Geoderma, 2014, 219-220, 145-154, DOI: 10.1016/j.geoderma.2014.01.004.

  • [4] BIELECKI J., JARZYNA J., BOŻEK S., LEKKI J., STACHURA Z., KWIATEK W.M., Computed microtomography and numerical study of porous rock samples, Radiation Physics and Chemistry, 2013, 93, 59-66, DOI: 10.1016/ j.radphyschem.2013.03.050.

  • [6] CESAREO R., ASSIS J.T. DE, CRESTANA S., Attenuation coefficients and tomographic measurements for soil in the energy range 10-300 keV, Applied Radiation and Isotopes, 1994, 45(5), 613-620, DOI: 10.1016/0969-8043(94)90205-4.

  • [7] CHASE G.D., RABINOWITZ J.L., Principles of radioisotope methodology, Burgess Publishing Co. Minneapolis, USA 1968.

  • [8] CORMACK A.M., Representation of a function by its line integrals, with some radiological applications, Journal of Applied Physics, 1963, 34(9), 2722-2727.

  • [9] CNUDDE V., BOONE M.N., High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications, Earth-Science Reviews, 2013, 123, 1-17, DOI: 10.1016/j.earscirev.2013.04.003.

  • [10] DVORKIN J., DERZHI N., FANG Q., NUR A., NUR B., GRADER A., BALDWIN C., TONO H., DIAZ E., From micro to reservoir scale: Permeability from digital experiments, The Leading Edge, 2009, 28, 1446-1452.

  • [11] HOEK E., CARRANZA-TORRES C., CORKUM B., Hoek-Brown failure criterion, Proceedings of NARMS-Tac. Conference, 2002, 267-273, Toronto, Canada.

  • [12] Itasca (2015). PFC3D v5. 0-user manual. Itasca Consulting Group, Minneapolis, USA.

  • [13] KACZMAREK Ł., ŁUKASIAK D., MAKSIMCZUK M., WEJRZANOWSKI T., Wykorzystanie wysokorozdzielczej mikrotomografii komputerowej oraz analizy ultradźwiękowej w charakterystyce struktury paleozoicznych gazonośnych łupków z basenu bałtyckiego, Nafta-Gaz, 2015, 71(12), 1017-1023, DOI: 10.18668/NG2015.10.

  • [14] KACZMAREK Ł., MACHOWSKI G., MAKSIMCZUK M., WEJRZANOWSKI T., Strukturalna analiza mioceńskich piaskowców z zapadliska przedkarpackiego za pomocą wysokorozdzielczej mikrotomografii komputerowej, Nafta-Gaz, 2015, 71(9), 647-654.

  • [15] KACZMAREK Ł., KOZŁOWSKA A., MAKSIMCZUK M., WEJRZANOWSKI T., The use of X-ray computed microtomography for graptolite detection in rock based on core internal structure visualization, Acta Geologica Polonica, 2017, 67(2), (in press), DOI: 10.1515/agp-2017-0010.

  • [16] KAPLAN I., Nuclear Physics, Addison-Wesley Publishing Co., Reading, USA, 1963.

  • [17] KETCHAM R.A., CARLSON W.D., Acquisition, optimization and interpretation of x-ray computed tomographic imagery: Applications to the geosciences, Computers and Geosciences, 2001, 27(4), 381-400.

  • [18] KRZYŻAK A., KACZMAREK Ł., Comparison of the efficiency of 1H NMR and μCT for determining the porosity of the selected rock cores, 16th International Multidisciplinary Scientific Geoconference GREEN SGEM, 2016, Vol. 4, 81-88. SGEM, DOI: 10.5593/SGEM2016/HB14/S01.011.

  • [19] LI X., KONIETZKY H., LI X., Numerical study on time dependent and time independent fracturing processes for brittle rocks, Engineering Fracture Mechanics, 2016, 163, 89-107, DOI: 10.1016/j.engfracmech.2016.08.008.

  • [20] MIRVIS S.E., Applications of magnetic resonance imaging and three-dimensional computed tomography in emergency medicine, Annals of Emergency Medicine, 1989, 18(12), 1315-1321, DOI: 10.1016/S0196-0644 (89)80268-9.

  • [21] NABIAŁEK M., BLOCH K., SZLAZAK K., SZOTA M., Magnetic properties and microstructure of a bulk amorphous Fe61Co10Ti3Y6B20 alloy, fabricated as rods and tubes, Materiali in Tehnologije, 2016, 50(2), 189-193, DOI: 10.17222/mit.2014.144.

  • [22] OLDENDORF W.H., Isolated flying spot detection of radiodensity discontinuities-displaying the internal structural pattern of a complex object, IRE Transactions on Bio-Medical Electronics, 1961, 8, 68-72.

  • [23] OSZCZYPKO N., KRZYWIEC P., POPADYUK I., PERYT T., Carpathian Foredeep Basin (Poland and Ukraine): Its Sedimentary, Structural, and Geodynamic Evolution, [in:] J. Golonko, F.J. Picha (Eds.), The Carpathians and their foreland: Geology and hydrocarbon resources, AAPG Memoir, 2006, 84, 293-350.

  • [24] PASZKOWSKI M., PORĘBSKI S.J., WARCHOL M., Koncepcja projektu otworu kierunkowego w mioceńskich utworach zapadliska przedkarpackiego, Wiadomości Naftowe i Gazownicze, 2009, 3(131), 4-13.

  • [25] PETCHSINGTO T., KARPYN Z.T., Deterministic Modeling of Fluid Flow through a CT-scanned Fracture Using Computational Fluid Dynamics, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2009, 31(11), 897-905, DOI: 10.1080/15567030701752842.

  • [26] PSTRUCHA A., MACHOWSKI G., KRZYŻAK A.T., Petrophysical characterization of the miocene sandstones of the carpathian foredeep (south-east Poland), 16th International Multidisciplinary Scientific Geoconference GREEN SGEM, 2016, Vol. 3, 891-898, SGEM, DOI: 10.5593/SGEM2016/B13/S06.112.

  • [27] RYBAK A., RYBAK A., KASZUWARA W., AWIETJAN S., JAROSZEWICZ J., The rheological and mechanical properties of magnetic hybrid membranes for gas mixtures separation, Materials Letters, 2016, 183, 170-174, DOI: 10.1016/ j.matlet.2016.07.078.

  • [28] SKIBINSKI J., CWIEKA K., WEJRZANOWSKI T., KURZYDLOWSKI K.J., Design of mechanical properties of open-cell porous materials based on μCT study of commercial foams, In MATEC Web of Conferences, 2015, 30, 03005-p.1-03005-p.5, DOI: 10.1051/ matecconf/20153003005.

  • [29] WEJRZANOWSKI T., HAJ IBRAHIM S., CWIEKA K., MILEWSKI J., KURZYDLOWSKI K.J., Design of open-porous materials for high-temperature fuel cells. Journal of Power Technologies, 2016, 96(3), 178-182.

  • [30] ZHAO Y., LIU SH., ZHAO G., ELSWORTH D, JIANG Y., HAN J., Failure mechanisms in coal: Dependence on strain rate and microstructure, Journal of Geophysical Research: Solid Earth, 2014, 119(9), 6924-6935.


Journal + Issues