Open Access

Numerical Approach in Recognition of Selected Features of Rock Structure from Hybrid Hydrocarbon Reservoir Samples Based on Microtomography


Cite

[1] APPOLONI C.R., FERNANDES C.P., RODRIGUES C.R.O., X-ray microtomography study of a sandstone reservoir rock, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 580(1), 629-632, DOI: 10.1016/ j.nima.2007.05.027.10.1016/j.nima.2007.05.027Search in Google Scholar

[2] BAKER D.R., MANCINI L., POLACCI M., HIGGINS M.D., GUALDA G.A.R., HILL R.J., RIVERS M.L., An introduction to the application of X-ray microtomography to the threedimensional study of igneous rocks, Lithos, 2016, 148, 262-276, DOI: 10.1016/j.lithos.2012.06.008.10.1016/j.lithos.2012.06.008Search in Google Scholar

[3] BECKERS E., PLOUGONVEN E., ROISIN C., HAPCA S., LÉONARD A., DEGRÉ A., X-ray microtomography: A porositybased thresholding method to improve soil pore network characterization?, Geoderma, 2014, 219-220, 145-154, DOI: 10.1016/j.geoderma.2014.01.004.10.1016/j.geoderma.2014.01.004Search in Google Scholar

[4] BIELECKI J., JARZYNA J., BOŻEK S., LEKKI J., STACHURA Z., KWIATEK W.M., Computed microtomography and numerical study of porous rock samples, Radiation Physics and Chemistry, 2013, 93, 59-66, DOI: 10.1016/ j.radphyschem.2013.03.050.10.1016/j.radphyschem.2013.03.050Search in Google Scholar

[6] CESAREO R., ASSIS J.T. DE, CRESTANA S., Attenuation coefficients and tomographic measurements for soil in the energy range 10-300 keV, Applied Radiation and Isotopes, 1994, 45(5), 613-620, DOI: 10.1016/0969-8043(94)90205-4.10.1016/0969-8043(94)90205-4Search in Google Scholar

[7] CHASE G.D., RABINOWITZ J.L., Principles of radioisotope methodology, Burgess Publishing Co. Minneapolis, USA 1968.Search in Google Scholar

[8] CORMACK A.M., Representation of a function by its line integrals, with some radiological applications, Journal of Applied Physics, 1963, 34(9), 2722-2727.10.1063/1.1729798Search in Google Scholar

[9] CNUDDE V., BOONE M.N., High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications, Earth-Science Reviews, 2013, 123, 1-17, DOI: 10.1016/j.earscirev.2013.04.003.10.1016/j.earscirev.2013.04.003Search in Google Scholar

[10] DVORKIN J., DERZHI N., FANG Q., NUR A., NUR B., GRADER A., BALDWIN C., TONO H., DIAZ E., From micro to reservoir scale: Permeability from digital experiments, The Leading Edge, 2009, 28, 1446-1452.10.1190/1.3272699Search in Google Scholar

[11] HOEK E., CARRANZA-TORRES C., CORKUM B., Hoek-Brown failure criterion, Proceedings of NARMS-Tac. Conference, 2002, 267-273, Toronto, Canada.Search in Google Scholar

[12] Itasca (2015). PFC3D v5. 0-user manual. Itasca Consulting Group, Minneapolis, USA.Search in Google Scholar

[13] KACZMAREK Ł., ŁUKASIAK D., MAKSIMCZUK M., WEJRZANOWSKI T., Wykorzystanie wysokorozdzielczej mikrotomografii komputerowej oraz analizy ultradźwiękowej w charakterystyce struktury paleozoicznych gazonośnych łupków z basenu bałtyckiego, Nafta-Gaz, 2015, 71(12), 1017-1023, DOI: 10.18668/NG2015.10.10.18668/NG2015.10Search in Google Scholar

[14] KACZMAREK Ł., MACHOWSKI G., MAKSIMCZUK M., WEJRZANOWSKI T., Strukturalna analiza mioceńskich piaskowców z zapadliska przedkarpackiego za pomocą wysokorozdzielczej mikrotomografii komputerowej, Nafta-Gaz, 2015, 71(9), 647-654.10.18668/NG2015.12.10Search in Google Scholar

[15] KACZMAREK Ł., KOZŁOWSKA A., MAKSIMCZUK M., WEJRZANOWSKI T., The use of X-ray computed microtomography for graptolite detection in rock based on core internal structure visualization, Acta Geologica Polonica, 2017, 67(2), (in press), DOI: 10.1515/agp-2017-0010.10.1515/agp-2017-0010Search in Google Scholar

[16] KAPLAN I., Nuclear Physics, Addison-Wesley Publishing Co., Reading, USA, 1963.Search in Google Scholar

[17] KETCHAM R.A., CARLSON W.D., Acquisition, optimization and interpretation of x-ray computed tomographic imagery: Applications to the geosciences, Computers and Geosciences, 2001, 27(4), 381-400.10.1016/S0098-3004(00)00116-3Search in Google Scholar

[18] KRZYŻAK A., KACZMAREK Ł., Comparison of the efficiency of 1H NMR and μCT for determining the porosity of the selected rock cores, 16th International Multidisciplinary Scientific Geoconference GREEN SGEM, 2016, Vol. 4, 81-88. SGEM, DOI: 10.5593/SGEM2016/HB14/S01.011.Search in Google Scholar

[19] LI X., KONIETZKY H., LI X., Numerical study on time dependent and time independent fracturing processes for brittle rocks, Engineering Fracture Mechanics, 2016, 163, 89-107, DOI: 10.1016/j.engfracmech.2016.08.008.10.1016/j.engfracmech.2016.08.008Search in Google Scholar

[20] MIRVIS S.E., Applications of magnetic resonance imaging and three-dimensional computed tomography in emergency medicine, Annals of Emergency Medicine, 1989, 18(12), 1315-1321, DOI: 10.1016/S0196-0644 (89)80268-9.Search in Google Scholar

[21] NABIAŁEK M., BLOCH K., SZLAZAK K., SZOTA M., Magnetic properties and microstructure of a bulk amorphous Fe61Co10Ti3Y6B20 alloy, fabricated as rods and tubes, Materiali in Tehnologije, 2016, 50(2), 189-193, DOI: 10.17222/mit.2014.144.10.17222/mit.2014.144Search in Google Scholar

[22] OLDENDORF W.H., Isolated flying spot detection of radiodensity discontinuities-displaying the internal structural pattern of a complex object, IRE Transactions on Bio-Medical Electronics, 1961, 8, 68-72.10.1109/TBMEL.1961.432285413730689Search in Google Scholar

[23] OSZCZYPKO N., KRZYWIEC P., POPADYUK I., PERYT T., Carpathian Foredeep Basin (Poland and Ukraine): Its Sedimentary, Structural, and Geodynamic Evolution, [in:] J. Golonko, F.J. Picha (Eds.), The Carpathians and their foreland: Geology and hydrocarbon resources, AAPG Memoir, 2006, 84, 293-350.Search in Google Scholar

[24] PASZKOWSKI M., PORĘBSKI S.J., WARCHOL M., Koncepcja projektu otworu kierunkowego w mioceńskich utworach zapadliska przedkarpackiego, Wiadomości Naftowe i Gazownicze, 2009, 3(131), 4-13.Search in Google Scholar

[25] PETCHSINGTO T., KARPYN Z.T., Deterministic Modeling of Fluid Flow through a CT-scanned Fracture Using Computational Fluid Dynamics, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2009, 31(11), 897-905, DOI: 10.1080/15567030701752842.10.1080/15567030701752842Search in Google Scholar

[26] PSTRUCHA A., MACHOWSKI G., KRZYŻAK A.T., Petrophysical characterization of the miocene sandstones of the carpathian foredeep (south-east Poland), 16th International Multidisciplinary Scientific Geoconference GREEN SGEM, 2016, Vol. 3, 891-898, SGEM, DOI: 10.5593/SGEM2016/B13/S06.112.10.5593/SGEM2016/B13/S06.112Search in Google Scholar

[27] RYBAK A., RYBAK A., KASZUWARA W., AWIETJAN S., JAROSZEWICZ J., The rheological and mechanical properties of magnetic hybrid membranes for gas mixtures separation, Materials Letters, 2016, 183, 170-174, DOI: 10.1016/ j.matlet.2016.07.078.10.1016/j.matlet.2016.07.078Search in Google Scholar

[28] SKIBINSKI J., CWIEKA K., WEJRZANOWSKI T., KURZYDLOWSKI K.J., Design of mechanical properties of open-cell porous materials based on μCT study of commercial foams, In MATEC Web of Conferences, 2015, 30, 03005-p.1-03005-p.5, DOI: 10.1051/ matecconf/20153003005.10.1051/matecconf/20153003005Search in Google Scholar

[29] WEJRZANOWSKI T., HAJ IBRAHIM S., CWIEKA K., MILEWSKI J., KURZYDLOWSKI K.J., Design of open-porous materials for high-temperature fuel cells. Journal of Power Technologies, 2016, 96(3), 178-182.Search in Google Scholar

[30] ZHAO Y., LIU SH., ZHAO G., ELSWORTH D, JIANG Y., HAN J., Failure mechanisms in coal: Dependence on strain rate and microstructure, Journal of Geophysical Research: Solid Earth, 2014, 119(9), 6924-6935.10.1002/2014JB011198Search in Google Scholar

eISSN:
2083-831X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Geosciences, other, Materials Sciences, Composites, Porous Materials, Physics, Mechanics and Fluid Dynamics