A Nanoscale Simulation Study of Elastic Properties of Gaspeite

Open access

Abstract

The study of structural and mechanical properties of carbonate rock is an interesting subject in engineering and its different applications. In this paper, the crystal structure of gaspeite (NiCO3) is investigated by carrying out molecular dynamics simulations based on energy minimization technique using an interatomic interaction potential.

At first, we focus on the structural properties of gaspeite mineral. And then, the elastic properties are calculated, including the elastic constants, bulk modulus, shear modulus, the S- and P-wave velocities. In the next part of this paper, the pressure effect will be studied on the structural and elastic properties of NiCO3 at high pressure.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] ARAUJO R.M. ERNESTO M. GIROLDO V. Computer simulation of static defects generated by the metals substitutional CaCO3 thesis Department of Physics at the Federal University of Sergipe Brasil 2004.

  • [2] ARCHER T.D. BIRSE S.E.A. DOVE M.T. et al. An interatomic potential model for carbonates allowing for polarization effects Phys. Chem. Minerals 2003 30 416–424.

  • [3] AUSTEN K.F. WRIGHT K. SLATER B. GALE J.D. The interaction of dolomite surfaces with metal impurities: A Computer Simulation Study Phys. Chem. Chem. Phys. 2005 7 4150–4156.

  • [4] BENAZZOUZ B.-K. Etude théorique des propriétés structurales et mécaniques de la roche rhodochrosite 31ème Rencontres Universitaires de Génie Civil Cachan 2013.

  • [5] BORN M. HUANG K. Dynamical theory of crystal lattices Oxford University Press Oxford 1954.

  • [6] CATLOW C.R.A. MACKRODT W.C. Computer Simulation of Solids 320 p. Berlin Springer-Verlag 1982.

  • [7] CATTI M. PAVESE A. PRICE G.D. Thermodynamic properties of CaCO3 calcite and aragonite: a quasi-harmonic calculation Phys. Chem. Miner. 1993 19 472–479.

  • [8] CYGAN R.T. WRIGHT K. FISLER D.K. GALE J.D. SLATER B. Atomistic models of carbonate minerals: bulk and surface structures defects and diffusion Molecular Simulation 2002 Vol. 28 (6–7) 475–495.

  • [9] DICK B.G. OVERHAUSER A.W. Theory of the dielectric constants of alkalihalide crystals Physical Review 1958 112 90–103.

  • [10] DOVE M.T. WINKLER B. LESLIE M. HARRIS M.J. SALJE E.K.H. A new interatomic potential model for calcite: applications to lattice dynamics studies phase transition and isotopic fractionation Am. Mineral. 1992 77 244–250.

  • [11] FISLER D.K. GALE J.D. CYGAN R.T. et al. A shell model for the simulation of rhombohedral carbonate minerals and their point defects Am. Mineral. 2000 85 217–224.

  • [12] GALE J.D. Empirical potential derivation for ionic materials Phil. Mag. B 1996 73 3.

  • [13] GALE J.D. GULP: A computer program for the symmetryadapted simulation of solids J. Chem. Soc. Faraday Trans. 1997 93 629–637.

  • [14] GALE J.D. ROHL A.L. The general utility lattice program (gulp) Molecular Simulation 2003 Vol. 29 (5) 291–341.

  • [15] JACKSON R.A. PRICE G.D. A transferable interatomic potential for calcium carbonate Molecular Simulation 1992 9 75–177.

  • [16] JACKSON R.A. MEENAN P.A. PRICE G.D. et al. Deriving empirical potentials for molecular ionic materials Mineral. Mag. 1995 59 617–622.

  • [17] LEEUW N.H. PARKER S.C. Modeling absorption and segregation of magnesium and cadmium ions to calcite surfaces: Introducing MgCO3 and CdCO3 potential models Journal of Chemical Physics 2000 Vol. 112 No. 9.

  • [18] NYE J.F. Physical properties of crystals Oxford University Press 1985.

  • [19] PARKER S.C. TITILOYE J.O. WATSON G.W. Phil. Trans. R Soc. London Ser. A Phys. Sci. Eng. 1993 344 37.

  • [20] PAVESE A. CATTI M. PRICE G.D. et al. Interatomic potentials for CaCO3 polymorphs (calcite and aragonite) fitted to elastic and vibrational data Phys. Chem. Minerals 1992 19 80–87.

  • [21] PAVESE A. CATTI M. PARKER S.C. WALL A. Modelling of the thermal dependence of structural and elastic properties of calcite CaCO3 Phys. Chem. Minerals 1996 23 89–93.

  • [22] PERTLIK. Structures of hydrothermally synthesized cobalt (II) carbonate and nickel(II) carbonate Acta Cryst. 1986 C42 4–5.

  • [23] ROHL A.L WRIGHT K. GALE J.D. Evidence from surface phonons for the (2 ˟ 1) reconstruction of the (10–14) surface of calcite from computer simulation American Mineralogist 2003 Vol. 88 921–925.

  • [24] SEKKAL W. TALEB N. ZAOUI A. SHAHROUR I. A lattice dynamical study of the aragonite and post-aragonite phases of calcium carbonate rock American Mineralogist 2008 Vol. 93 1608–1612.

  • [25] VINOGRAD V.L WINKLER B. PUTNIS A. GALE J.D. SLUITER M.H.F. Static lattice energy calculations of mixing and ordering enthalpy in binary carbonate solid solutions Chemical Geology 2006 225 304–313.

  • [26] WANG Q. GRAU-CRESPO R. DE LEEUW N.H. Mixing Thermodynamics of the Calcite-Structured (Mn Ca)CO3 Solid Solution: A Computer Simulation Study J. Phys. Chem. B 2011 115 3854–13861.

  • [27] ZAOUI A. SHAHROUR I. Molecular dynamics study of highpressure polymorphs of BaCO3 Philosophical Magazine Letters 2010 Vol. 90 No. 9 689–697. [28]ZHANG J. REEDER R.J. Comparative compressibilities of calcite-structure carbonates: Deviations from empirical relations American Mineralogist 1999 84 861–870.

  • [28] ZHANG J. REEDER R.J. Comparative compressibilities of calcite-structure carbonates: Deviations from empirical relations American Mineralogist 1999 84 861–870.

Search
Journal information
Impact Factor

CiteScore 2018: 1.03

SCImago Journal Rank (SJR) 2018: 0.213
Source Normalized Impact per Paper (SNIP) 2018: 1.106

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 145 67 2
PDF Downloads 96 67 2