Open Access

A Nanoscale Simulation Study of Elastic Properties of Gaspeite


Cite

[1] ARAUJO R.M., ERNESTO M., GIROLDO V., Computer simulation of static defects generated by the metals substitutional CaCO3, thesis, Department of Physics at the Federal University of Sergipe, Brasil, 2004.Search in Google Scholar

[2] ARCHER T.D., BIRSE S.E.A., DOVE M.T. et al., An interatomic potential model for carbonates allowing for polarization effects, Phys. Chem. Minerals, 2003, 30, 416–424.10.1007/s00269-002-0269-zSearch in Google Scholar

[3] AUSTEN K.F., WRIGHT K., SLATER B., GALE J.D., The interaction of dolomite surfaces with metal impurities: A Computer Simulation Study, Phys. Chem. Chem. Phys., 2005, 7, 4150–4156.10.1039/b510454h16474881Search in Google Scholar

[4] BENAZZOUZ B.-K., Etude théorique des propriétés structurales et mécaniques de la roche rhodochrosite, 31ème Rencontres Universitaires de Génie Civil, Cachan, 2013.Search in Google Scholar

[5] BORN M., HUANG K., Dynamical theory of crystal lattices, Oxford University Press, Oxford, 1954.Search in Google Scholar

[6] CATLOW C.R.A., MACKRODT W.C., Computer Simulation of Solids, 320, p. Berlin, Springer-Verlag, 1982.10.1007/BFb0017927Search in Google Scholar

[7] CATTI M., PAVESE A., PRICE G.D., Thermodynamic properties of CaCO3 calcite and aragonite: a quasi-harmonic calculation, Phys. Chem. Miner., 1993, 19, 472–479.10.1007/BF00203187Search in Google Scholar

[8] CYGAN R.T., WRIGHT K., FISLER D.K., GALE J.D., SLATER B., Atomistic models of carbonate minerals: bulk and surface structures, defects, and diffusion, Molecular Simulation, 2002, Vol. 28 (6–7), 475–495.10.1080/08927020290030099Search in Google Scholar

[9] DICK B.G., OVERHAUSER A.W., Theory of the dielectric constants of alkalihalide crystals, Physical Review, 1958, 112, 90–103.10.1103/PhysRev.112.90Search in Google Scholar

[10] DOVE M.T., WINKLER B., LESLIE M., HARRIS M.J., SALJE E.K.H., A new interatomic potential model for calcite: applications to lattice dynamics studies, phase transition, and isotopic fractionation, Am. Mineral., 1992, 77, 244–250.Search in Google Scholar

[11] FISLER D.K., GALE J.D., CYGAN R.T. et al., A shell model for the simulation of rhombohedral carbonate minerals and their point defects, Am. Mineral., 2000, 85, 217–224.10.2138/am-2000-0121Search in Google Scholar

[12] GALE J.D., Empirical potential derivation for ionic materials, Phil. Mag. B, 1996, 73, 3.10.1080/13642819608239107Search in Google Scholar

[13] GALE J.D., GULP: A computer program for the symmetryadapted simulation of solids, J. Chem. Soc. Faraday Trans., 1997, 93, 629–637.10.1039/a606455hSearch in Google Scholar

[14] GALE J.D., ROHL A.L., The general utility lattice program (gulp), Molecular Simulation, 2003, Vol. 29 (5), 291–341.10.1080/0892702031000104887Search in Google Scholar

[15] JACKSON R.A., PRICE G.D., A transferable interatomic potential for calcium carbonate, Molecular Simulation, 1992, 9, 75–177.10.1080/08927029208050610Search in Google Scholar

[16] JACKSON R.A., MEENAN P.A., PRICE G.D. et al., Deriving empirical potentials for molecular ionic materials, Mineral. Mag., 1995, 59, 617–622.10.1180/minmag.1995.059.397.05Search in Google Scholar

[17] LEEUW N.H., PARKER S.C., Modeling absorption and segregation of magnesium and cadmium ions to calcite surfaces: Introducing MgCO3 and CdCO3 potential models, Journal of Chemical Physics, 2000, Vol. 112, No. 9.10.1063/1.480979Search in Google Scholar

[18] NYE J.F., Physical properties of crystals, Oxford University Press, 1985.Search in Google Scholar

[19] PARKER S.C., TITILOYE J.O., WATSON G.W., Phil. Trans. R Soc. London, Ser. A Phys. Sci. Eng. 1993, 344, 37.Search in Google Scholar

[20] PAVESE A., CATTI M., PRICE G.D. et al., Interatomic potentials for CaCO3 polymorphs (calcite and aragonite), fitted to elastic and vibrational data, Phys. Chem. Minerals, 1992, 19, 80–87.10.1007/BF00198605Search in Google Scholar

[21] PAVESE A., CATTI M., PARKER S.C., WALL A., Modelling of the thermal dependence of structural and elastic properties of calcite, CaCO3, Phys. Chem. Minerals, 1996, 23, 89–93.10.1007/BF00202303Search in Google Scholar

[22] PERTLIK., Structures of hydrothermally synthesized cobalt (II) carbonate and nickel(II) carbonate, Acta Cryst., 1986, C42, 4–5.10.1107/S0108270186097524Search in Google Scholar

[23] ROHL A.L, WRIGHT K., GALE J.D., Evidence from surface phonons for the (2 ˟ 1) reconstruction of the (10–14) surface of calcite from computer simulation, American Mineralogist, 2003, Vol. 88, 921–925.10.2138/am-2003-5-622Search in Google Scholar

[24] SEKKAL W., TALEB N., ZAOUI A., SHAHROUR I., A lattice dynamical study of the aragonite and post-aragonite phases of calcium carbonate rock, American Mineralogist, 2008, Vol. 93, 1608–1612.10.2138/am.2008.2820Search in Google Scholar

[25] VINOGRAD V.L, WINKLER B., PUTNIS A., GALE J.D., SLUITER M.H.F., Static lattice energy calculations of mixing and ordering enthalpy in binary carbonate solid solutions, Chemical Geology, 2006, 225, 304–313.10.1016/j.chemgeo.2005.08.023Search in Google Scholar

[26] WANG Q., GRAU-CRESPO R., DE LEEUW N.H., Mixing Thermodynamics of the Calcite-Structured (Mn, Ca)CO3 Solid Solution: A Computer Simulation Study, J. Phys. Chem. B, 2011, 115, 3854–13861.10.1021/jp200378q22011346Search in Google Scholar

[27] ZAOUI A., SHAHROUR I., Molecular dynamics study of highpressure polymorphs of BaCO3, Philosophical Magazine Letters, 2010, Vol. 90, No. 9, 689–697. [28]ZHANG J., REEDER R.J., Comparative compressibilities of calcite-structure carbonates: Deviations from empirical relations, American Mineralogist, 1999, 84, 861–870.10.2138/am-1999-5-620Search in Google Scholar

[28] ZHANG J., REEDER R.J., Comparative compressibilities of calcite-structure carbonates: Deviations from empirical relations, American Mineralogist, 1999, 84, 861–870.10.2138/am-1999-5-620Search in Google Scholar

eISSN:
2083-831X
ISSN:
0137-6365
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Geosciences, other, Materials Sciences, Composites, Porous Materials, Physics, Mechanics and Fluid Dynamics