Microalgae Harvesting: A Review

Alexandra Kucmanová 1  and Kristína Gerulová 1
  • 1 Slovak University of Technology in Bratislava, Faculty of Materials Science and Technology in Trnava, Institute of Integrated Safety, 917 24, Trnava


Microalgae are photosynthetic autotrophic microscopic organisms growing in a range of aquatic and terrestrial habitats. They produce a huge complex of compounds in their surroundings which are of important use to humans. Their commercial use lies in human nutrition, animal and aquatic feed, in cosmetics products, natural pigments, pharmaceutical industry, bio-fertilizer for extracting high-value molecules, stable isotope biochemicals, and for the synthesis of antimicrobial, antiviral, antibacterial and anticancer drugs. Therefore, it is necessary to develop a simple, effective and economically advantageous method for harvesting the algal products. Magnetic separation is a simple separation process. Different synthesis methods have been used by researchers to obtain magnetic particles of varying size and shapes according to the algae to be studied. Chemical co-precipitation method has been the most commonly used method, which helps in synthesizing magnetic particles of the micro to nano range. Naked, coated and surface modified are the general types of magnetic particles used for algal harvesting with its own advantages and disadvantages.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] AGARWAL, P., RITIKA G., AGARWAL, N. 2019. Advances in Synthesis and Applications of Microalgal Nanoparticles for Wastewater Treatment. Journal of Nanotechnology,2019, 1–9. https://doi.org/10.1155/2019/7392713.

  • [2] AMARO, H. M., A. GUEDES, C., MALCATA, F. X. 2011. Advances and Perspectives in Using Microalgae to Produce Biodiesel. Applied Energy,88(10): 3402–3410. https://doi.org/10.1016/j.apenergy.2010.12.014.

  • [3] ANSARI, F. A., SHEKH, A. Y., GUPTA, S. K., BUX, F. 2017. Microalgae for Biofuels: Applications, Process Contrains and Future Needs. Algal Biofuels: Recent Advances and Future Prospects, 57–76. https://doi.org/10.1007/978-3-319-51010-1.

  • [4] BAJPAI, P. 2019. Third Generation Biofuels. Springer Nature Singapore Pte Ltd., 2019. 87 p. ISBN 978-981-136-2378-2.

  • [5] BARROS, A. I., GONÇALVES, A. L., SIMÕES, M., PIRES, J. C.M. 2015. Harvesting Techniques Applied to Microalgae: A Review. Renewable and Sustainable Energy Reviews 41, 1489–1500. https://doi.org/10.1016/j.rser.2014.09.037.

  • [6] BHARTE, S., DESAI, K. 2018. Harvesting Chlorella Species Using Magnetic Iron Oxide Nanoparticles. Phycological Research, 67(3), 128–133. https://doi.org/10.1111/pre.12358.

  • [7] CAI, T., PARK, S. Y., LI, Y. 2013. Nutrient Recovery from Wastewater Streams by Microalgae: Status and Prospects. Renewable and Sustainable Energy Reviews, 19, 360–369. https://doi.org/10.1016/j.rser.2012.11.030.

  • [8] CERFF, M., MORWEISER, M., DILLSCHNEIDER, R., MICHEL, A., MENZEL, K., POSTEN, C. 2012. Harvesting Fresh Water and Marine Algae by Magnetic Separation: Screening of Separation Parameters and High Gradient Magnetic Filtration. Bioresource Technology, 118, 289–295. https://doi.org/10.1016/j.biortech.2012.05.020.

  • [9] COLLOTTA, M., CHAMPAGNE, P., MABEE, W., TOMASONI, G., LEITE, G. B., BUSI, L., ALBERTI, M. 2017. Comparative LCA of Flocculation for the Harvesting of Microalgae for Biofuels Production. Procedia CIRP, 61, 756–760. https://doi.org/10.1016/j.procir.2016.11.146.

  • [10] DARVEHEI, P., BAHRI, P. A., MOHEIMANI, N. R.. 2018. Model Development for the Growth of Microalgae: A Review. Renewable and Sustainable Energy Reviews, 97, 233–258. https://doi.org/10.1016/j.rser.2018.08.027.

  • [11] DEMIRBAS, A. 2010. Use of Algae as Biofuel Sources. Energy Conversion and Management, 51(12), 2738–2749. https://doi.org/10.1016/j.enconman.2010.06.010.

  • [12] ENAMALA, M. K., ENAMALA, S., CHAVALI, M., DONEPUDI, J., YADAVALLI, R., KOLAPALLI, B., ARADHYULA, T. V., VELPURI, J., KUPPAM, Ch. 2018. Production of Biofuels from Microalgae - A Review on Cultivation, Harvesting, Lipid Extraction, and Numerous Applications of Microalgae. Renewable and Sustainable Energy Reviews,94, 49–68. https://doi.org/10.1016/j.rser.2018.05.012.

  • [13] FASAEI, F., BITTER, J. H., SLEGERS, P. M., van BOXTEL, A. J.B. 2018. Techno-Economic Evaluation of Microalgae Harvesting and Dewatering Systems. Algal Research, 31, 347–362. https://doi.org/10.1016/j.algal.2017.11.038.

  • [14] FRAGA-GARCÍA, P., KUBBUTAT, P., BRAMMEN, M., SCHWAMINGER, S., BERENSMEIER, S. 2018. Bare Iron Oxide Nanoparticles for Magnetic Harvesting of Microalgae: From Interaction Behavior to Process Realization. Nanomaterials,8(5), 1 - 17. https://doi.org/10.3390/nano8050292.

  • [15] GERULOVÁ, K., BARTOŠOVÁ, A., BLINOVÁ, L., BÁRTOVÁ, K., DOMÁNKOVÁ, M., GARAIOVÁ, Z., PALCUT, M. 2018. Magnetic Fe3O4-Polyethyleneimine Nanocomposites for Efficient Harvesting of Chlorella zofingiensis, Chlorella vulgaris, Chlorella sorokiniana, Chlorella ellipsoidea and Botryococcus braunii. Algal Research, 33, 165–172. https://doi.org/10.1016/j.algal.2018.05.003.

  • [16] HAMED, I. 2016. The Evolution and Versatility of Microalgal Biotechnology: A Review. Comprehensive Reviews in Food Science and Food Safety,15(6), 1104–1123. https://doi.org/10.1111/1541-4337.12227.

  • [17] HARUN, R., SINGH, M., FORDE, G. M., DANQUAH, M. K. 2010. Bioprocess Engineering of Microalgae to Produce a Variety of Consumer Products. Renewable and Sustainable Energy Reviews,14(3), 1037–1047. https://doi.org/10.1016/j.rser.2009.11.004.

  • [18] HOCHMAN, G., ZILBERMAN, D. 2014. Algae Farming and Its Bio-Products. In McCann M., Buckeridge M., Carpita N. (eds) Plants and BioEnergy. Advances in Plant Biology, 4, Springer, New York, pp. 49-64. https://doi.org/10.1007/978-1-4614-9329-7.

  • [19] HU, Y.-R., GUO, CH., WANG, F., WANG, S.-K., PAN, F., LIU, CH.-Z. 2014. Improvement of Microalgae Harvesting by Magnetic Nanocomposites Coated with Polyethylenimine. Chemical Engineering Journal,242, 341–347. https://doi.org/10.1016/j.cej.2013.12.066.

  • [20] HU, Y.-R., WANG, F., WANG, S.-K., LIU, CH.-Z., GUO, CH. 2013. Efficient Harvesting of Marine Microalgae Nannochloropsis maritima Using Magnetic Nanoparticles. Bioresource Technology138, 387–390. https://doi.org/10.1016/j.biortech.2013.04.016.

  • [21] CHRISTENSON, L., SIMS, R. 2011. Production and Harvesting of Microalgae for Wastewater Treatment, Biofuels, and Bioproducts. Biotechnology Advances, 29(6), 686–702. https://doi.org/10.1016/j.biotechadv.2011.05.015.

  • [22] JIANG, B., LIAN, L., XING, Y., ZHANG, N., CHEN, Y., LU, P., ZHANG, N. 2018. Advances of Magnetic Nanoparticles in Environmental Application: Environmental Remediation and (Bio)Sensors as Case Studies. Environmental Science and Pollution Research,25(31), 30863–30879. https://doi.org/10.1007/s11356-018-3095-7.

  • [23] JIANG, Ch., WANG, Ren, MA, W. 2010. The Effect of Magnetic Nanoparticles on Microcystis aeruginosa Removal by a Composite Coagulant. Colloids and Surfaces A: Physicochemical and Engineering Aspects,369(1–3), 260–267. https://doi.org/10.1016/j.colsurfa.2010.08.033.

  • [24] KHAN, M. I., SHIN, J. H., KIM, J. D. 2018. The Promising Future of Microalgae: Current Status, Challenges, and Optimization of a Sustainable and Renewable Industry for Biofuels, Feed, and Other Products. Microbial Cell Factories17(1), 1–21. https://doi.org/10.1186/s12934-018-0879-x.

  • [25] LEE, K., LEE, S. Y., NA, J.-G., JEON, S.-G., PRAVEENKUMAR, R., KIM, D.-M., CHANG, W.-S., OH, Y.-K. 2013. Magnetophoretic Harvesting of Oleaginous Chlorella Sp. by Using Biocompatible Chitosan/Magnetic Nanoparticle Composites. Bioresource Technology, 149, 575–578. https://doi.org/10.1016/j.biortech.2013.09.074.

  • [26] LEE, K., LEE, S. Y., PRAVEENKUMAR, R., KIM, B., SEO, J. Y., JEON, S. G., NA, J.-G., PARK, J.-Y., KIM, D.-M., OH, Y.-K. 2014. Repeated Use of Stable Magnetic Flocculant for Efficient Harvest of Oleaginous Chlorella Sp. Bioresource Technology,167, 284–290. https://doi.org/10.1016/j.biortech.2014.06.055.

  • [27] LEITE, G. B., ABDELAZIZ, A. E.M., HALLENBECK, P. C. 2013. Algal Biofuels: Challenges and Opportunities. Bioresource Technology,145, 134–141. https://doi.org/10.1016/j.biortech.2013.02.007.

  • [28] LIU, P.-R., WANG, T., YANG, Z.-Y., HONG, Y., HOU, Y.-L. 2017. Long-Chain Poly-Arginine Functionalized Porous Fe3O4 Microspheres as Magnetic Flocculant for Efficient Harvesting of Oleaginous Microalgae. Algal Research,27, 99–108. https://doi.org/10.1016/j.algal.2017.08.025.

  • [29] LIU, P.-R., ZHANG, H.-L., WANG, T., YANG, W.-L., HONG, Y., HOU, Y.-L. 2016. Functional Graphene-Based Magnetic Nanocomposites as Magnetic Flocculant for Efficient Harvesting of Oleaginous Microalgae. Algal Research,19, 86–95. https://doi.org/10.1016/j.algal.2016.07.008.

  • [30] MATHIMANI, T., MALLICK, N. 2018. A Comprehensive Review on Harvesting of Microalgae for Biodiesel - Key Challenges and Future Directions. Renewable and Sustainable Energy Reviews,91, 1103–1120. https://doi.org/10.1016/j.rser.2018.04.083.

  • [31] MOBIN, S., ALAM, F. 2017. Some Promising Microalgal Species for Commercial Applications: A Review. Energy Procedia,110, 510–517. https://doi.org/10.1016/j.egypro.2017.03.177.

  • [32] MOLINA GRIMA, E., BELARBI, E.-H., ACIÉN FERNÁNDEZ, F. G., ROBLES MEDINA, A., CHISTI, Y. 2003. Recovery of Microalgal Biomass and Metabolites: Process Options and Economics. Biotechnology Advances,20(7–8), 491–515. http://www.ncbi.nlm.nih.gov/pubmed/14550018.

  • [33] PANDEY, M. K., DASGUPTA, CH. N., MISHRA, S., SRIVASTAVA, M., GUPTA, V. K., SUSEELA, M. R., RAMTEKE, P. W. 2019. Bioprospecting Microalgae from Natural Algal Bloom for Sustainable Biomass and Biodiesel Production. Applied Microbiology and Biotechnology, 103, 5447–5458. https://doi.org/10.1007/s00253-019-09856-2.

  • [34] PRAGYA, N., PANDEY, K. K., SAHOO, P. K. 2013. A Review on Harvesting, Oil Extraction and Biofuels Production Technologies from Microalgae. Renewable and Sustainable Energy Reviews,24, 159–171. https://doi.org/10.1016/j.rser.2013.03.034.

  • [35] PROCHAZKOVÁ, G., ŠAFÁRIK, I., BRANYIK, T. 2013. Harvesting Microalgae with Microwave Synthesized Magnetic Microparticles. Bioresource Technology, 130, 472–477. https://doi.org/10.1016/j.biortech.2012.12.060.

  • [36] RASTOGI, R. P., PANDEY, A., LARROCHE, CH., MADAMWAR, D. 2018. Algal Green Energy – R&D and Technological Perspectives for Biodiesel Production. Renewable and Sustainable Energy Reviews,82, 2946–2969. https://doi.org/10.1016/j.rser.2017.10.038.

  • [37] RIZWAN, M., MUJTABA, G., MEMON, S. A., LEE, K., RASHID, N. 2018. Exploring the Potential of Microalgae for New Biotechnology Applications and beyond: A Review. Renewable and Sustainable Energy Reviews,92, 394–404. https://doi.org/10.1016/j.rser.2018.04.034.

  • [38] SAXENA, P. & Harish. 2018. Nanoecotoxicological Reports of Engineered Metal Oxide Nanoparticles on Algae. Current Pollution Reports,4(2), 128–142. https://doi.org/10.1007/s40726-018-0088-6.

  • [39] SEO, J. Y., KIM, M. G., LEE, K., LEE, Y.-C., NA, J.-G., JEON, S. G., PARK, S. B., OH, Y.-K. 2017. Multifunctional Nanoparticle Applications to Microalgal Biorefinery. In: Rai M., da Silva S. (eds) Nanotechnology for Bioenergy and Biofuel Production. Green Chemistry and Sustainable Technology. Springer, Cham, Switzerland. 370 p. ISBN 978-3-319-45459-7.

  • [40] SINGH, G., PATIDAR, S. K. 2018. Microalgae Harvesting Techniques: A Review. Journal of Environmental Management,217, 499–508. https://doi.org/10.1016/j.jenvman.2018.04.010.

  • [41] SUN, R., SUN, P., ZHANG, J., ESQUIVEL-ELIZONDO, S., WU, Y. 2018. Microorganisms-Based Methods for Harmful Algal Blooms Control: A Review. Bioresource Technology,248, 12–20. https://doi.org/10.1016/j.biortech.2017.07.175.

  • [42] TAJABADI, M., KHOSROSHAHI, M. E.. 2013. Effect of Alkaline Media Concentration and Modification of Temperature on Magnetite Synthesis Method Using FeSO4/NH4OH. International Journal of Chemical Engineering and Applications,3(3), 206–210. https://doi.org/10.7763/ijcea.2012.v3.187.

  • [43] VALVERDE, F., ROMERO-CAMPERO, F. J., ROSA, L., GUERRERO, M. G., SERRANO, A. 2016. New Challenges in Microalgae Biotechnology. European Journal of Protistology, 55, 95–101. https://doi.org/10.1016/j.ejop.2016.03.002.

  • [44] WAN, CH., ALAM, M. A., ZHAO, X.-Q., ZHANG, X.-Y., GUO, S.-L., HO, S.-H., CHANG, J.-S., BAI, F.-W. 2015. Current Progress and Future Prospect of Microalgal Biomass Harvest Using Various Flocculation Technologies. Bioresource Technology, 184, 251–257. https://doi.org/10.1016/j.biortech.2014.11.081.

  • [45] WANG, S.-K., STILES, A. R., GUO, CH., LIU, CH.-Z. 2015. Harvesting Microalgae by Magnetic Separation: A Review. Algal Research,9, 178–185. https://doi.org/10.1016/j.algal.2015.03.005.

  • [46] WANG, T., YANG, W.-L., HONG, Y., HOU, Y.-L. 2016. Magnetic Nanoparticles Grafted with Amino-Riched Dendrimer as Magnetic Flocculant for Efficient Harvesting of Oleaginous Microalgae. Chemical Engineering Journal,297, 304–314. https://doi.org/10.1016/j.cej.2016.03.038.

  • [47] XU, L., GUO, CH., WANG, F., ZHENG, S., LIU, CH.-Z. 2011. A Simple and Rapid Harvesting Method for Microalgae by in Situ Magnetic Separation. Bioresource Technology,102(21), 10047–10051. https://doi.org/10.1016/j.biortech.2011.08.021.

  • [48] XU, Y., Fu, Y., ZHANG, D. 2017. Cost-Effectiveness Analysis on Magnetic Harvesting of Algal Cells. Materials Today: Proceedings, 4, 50–56. https://doi.org/10.1016/j.matpr.2017.01.192.

  • [49] YANG, Y., HOU, J., WANG, P., WANG, CH., MIAO, L., AO, Y., XU, Y., et al. 2018. Interpretation of the Disparity in Harvesting Efficiency of Different Types of Microcystis Aeruginosa Using Polyethylenimine (PEI)-Coated Magnetic Nanoparticles. Algal Research,29, 257–265. https://doi.org/10.1016/j.algal.2017.10.020.

  • [50] ZHAO, Y., LIANG, W., LIU, L., LI, F., FAN, Q., SUN, X. 2015. Harvesting Chlorella vulgaris by Magnetic Flocculation Using Fe3O4 coating with Polyaluminium Chloride and Polyacrylamide. Bioresource Technology,198, 789–796. https://doi.org/10.1016/j.biortech.2015.09.087.

  • [51] ZHAO, Y., WANG, X., JIANG, X., FAN, Q., LI, X., JIAO, L., LIANG, W. 2018. Harvesting of Chlorella vulgaris Using Fe3O4 Coated with Modified Plant Polyphenol. Environmental Science and Pollution Research,25(26), 26246–26258. https://doi.org/10.1007/s11356-018-2677-8.

  • [52] ZHOU, W., MIN, M., HU, B., MA, X., LIU, Y., WANG, Q., SHI, J., CHEN, P., RUAN, R. 2013. Filamentous Fungi Assisted Bio-Flocculation: A Novel Alternative Technique for Harvesting Heterotrophic and Autotrophic Microalgal Cells. Separation and Purification Technology,107, 158–165. https://doi.org/10.1016/j.seppur.2013.01.030.


Journal + Issues